
C-Programming

Ashok Shankar Das

April 14, 2008

2

Hello! This material is free. You are encouraged to use it. But if something bad i mean
any thing bad happened to you like you lost your keys or even blown your computer
then the author is not responsible. But it will help the author a lot if you can send errata
to his e-mail: ashok.s.das@gmail.com for future modifications. The intent of author is
to help beginers. author is no way a pro because he thinks life is a learning process.
Hence your suggestions and modifications will teach author a lot. The plan author has
is to add some project codes. Those projects should be intended for beginers. Any
thing like a small database management system, text based game tic-tac-toe will be
great.
Lastly author reserves the copyright.
Copyright(c)2003-2004 2005-2008 by Ashok Shankar Das, ashok.s.das@gmail.com

Contents

1 Introduction 7
1.1 History Of Computer . 7
1.2 History and Features of C . 8
1.3 Course direction . 9

2 Overview Of Programming 11
2.1 Computer based Problem solving . 11

2.1.1 Introduction . 11
2.1.2 Problem definition . 11
2.1.3 Use of example for problem solving 11
2.1.4 Similarities between problems 12
2.1.5 Problem solving strategies 12

2.2 Program design and implementation issues 12
2.2.1 Programs and algorithms . 12
2.2.2 Top-down design and stepwise refinement 12
2.2.3 Construction of loops-basic programming construct 13
2.2.4 Implementation . 13

2.3 Programming environment . 14
2.3.1 Programming Language Classification 14

2.3.1.1 Assemblers . 14
2.3.1.2 Compilers . 14
2.3.1.3 Interpreters . 14

2.4 Summing up . 14

3 C Programs 15
3.1 A small program . 15
3.2 Using your compiler . 15

3.2.1 For turbo C . 15
3.2.2 For gcc (Linux/djgpp) . 16

3.3 Dissection of hey.c . 16
3.4 Skeleton in the cupboard... 17
3.5 Summing Up . 18

3

4 CONTENTS

4 Data Types 19
4.1 Data . 19

4.1.1 Classification of data . 19
4.1.2 Type Modifiers . 20

4.2 Identifiers . 20
4.3 Variables . 21

4.3.1 Variable Types . 21
4.3.1.1 Local Variables 21
4.3.1.2 Global Variables 22
4.3.1.3 Formal Parameters 22

4.4 Access Modifier . 22
4.4.1 const . 23
4.4.2 volatile . 23

4.5 Storage Class Specifier . 23
4.5.1 extern . 23
4.5.2 static . 24

4.5.2.1 Local static variables 24
4.5.2.2 Global static variables 24

4.5.3 register . 24
4.6 Summing up . 24

5 Operators 27
5.1 Arithmetic operators . 27
5.2 Relational and Logical Operators . 28
5.3 Miscellaneous other operators . 29
5.4 The () and [] Operators . 30
5.5 Bit wise operators . 30
5.6 Type casting . 32
5.7 Precedence table . 32
5.8 Summing Up . 32

6 Branching 33
6.1 goto . 33
6.2 If...else . 33
6.3 Nested if...else statement . 35
6.4 switch...case... 35
6.5 Summing Up . 36

7 Loops 37
7.1 for loop . 37
7.2 while loop . 38
7.3 do...while loop . 39
7.4 Nested loops . 39

7.4.1 Nested for loop . 39
7.4.2 Nested while loop . 40
7.4.3 Nested do...while loop . 40

CONTENTS 5

7.5 Infinite loop . 40
7.6 Break and continue . 41
7.7 Summing Up . 42

8 Compound Data-Types 43
8.1 Arrays . 43

8.1.1 Accessing array element . 43
8.1.2 Multi dimensional arrays . 44
8.1.3 Array of characters . 46

8.2 Summing up . 46

9 User defined data-types 47
9.1 Structure . 47

9.1.1 Array of structure . 49
9.1.2 Structure within a structure 50

9.2 Union . 51
9.3 Enumerated data type . 52
9.4 Typedef . 52
9.5 Summing up . 53

10 Functions 55
10.1 Function call . 56

10.1.1 Parameter passing technique 57
10.1.2 Call by value . 58

10.2 Structures and functions . 59
10.2.1 Passing elements of a structure 59
10.2.2 Passing the entire structure 60

10.3 Recursion . 60
10.4 Summing Up . 61

11 Pointer 63
11.1 What is pointer? . 63

11.1.1 Pointer variables . 63
11.2 The operators . 64
11.3 Pointer expressions . 64

11.3.1 Assignment . 64
11.3.2 Addition and subtraction . 65
11.3.3 Comparison . 65

11.4 Relation between array and pointer 65
11.5 Pointer to pointer . 67
11.6 Array of pointers . 67
11.7 Multidimensional array . 68
11.8 Pointer to structure . 68
11.9 Function and pointer . 69

11.9.1 Pass by reference (passing pointer as argument) 69
11.9.2 Function returning pointer 70

6 CONTENTS

11.9.3 Pointer to function . 71
11.9.4 Variable numbers of argument passing to function 72

11.10Command line Parameter passing 73
11.11Summing up . 75

12 Dynamic Data structures 77
12.1 Dynamic memory allocation . 77
12.2 Linked list . 79

12.2.1 Creation . 79
12.2.2 Searching . 82
12.2.3 Inserting a node . 83
12.2.4 Deleting . 84

12.3 Stacks . 85
12.4 Queue . 87
12.5 Summing up . 89

13 File Operations 91
13.1 Opening and closing a file . 91
13.2 Writing into a file . 94
13.3 Reading from a file . 95
13.4 Writing and reading a buffer . 97
13.5 Random access files . 101

13.5.1 rewind() . 103
13.6 Summing up . 104

14 Mixed Mode Programming 105
14.1 Calling conventions . 105

14.1.1 Pascal calling convention . 106
14.1.2 cdcl . 106
14.1.3 Stdcall . 106
14.1.4 fastcall or register call . 106

14.2 Libraries . 107
14.2.1 How to make a library . 107

14.3 Using assembly language routine with C 108
14.3.1 An example assembly routine 108
14.3.2 A C program to call assembly language routine 109

14.4 A small project . 109
14.5 Summing Up . 117

Chapter 1

Introduction

1.1 History Of Computer

Gone were the days when the human race started counting numbers, with objects, like
fingers, pebbles, sticks etc. With the advancement of civilization, they devised methods
to add, subtract, multiply and divide. Gradually those methods of representing them
were modified too. In the process of modification they came across machines from
Abacus to calculators. In the process of development Blaize Pascal had invented an
incredible machine known as Calculating machine.

The calculating machine was remarkable in certain way that it had features to store
data for future use. It had a memory unit. The whole of calculating machine was made
of mechanical part and Blaize Pascal gave the idea of mechanical memory.

Based upon the Calculating machine mechanical desk calculators were designed. In
those machines there was a keyboard similar to typewriter but had number of function
(operation) keys. You had to key-in the numbers send them to accumulator and use
function-keys to perform operation on the numbers you entered.

Then comes the era of Electrical machines. Now the electric energy is being used to
drive those machines. When Samuel Morse developed his Telegraph machine and his
Morse code, it gave rise to a state represented character. This idea gave birth to Binary
representation. In the time of world war-II electro-magnetic switches (relays) were
used to control different machineries. As we all know, a switch has 2-states, namely
ON and OFF, so relays have also 2-states. Using relays some scientists developed a
decision-making machine for war strategy. It was quite efficient in those days. When
vacuum tubes (diodes, triodes) were developed in the era of electronics the old relays
were replaced with them. Now scientists got an electronic version of a decision making
machine. They started adding features and upgrading it. Ultimately they made a ma-
chine, named ENIAC. It was a huge machine having switch for input data and bulbs for
output. At that time scientists assumed if they could have four such machines then the
computing need of the world would have been solved. As technology grew, with them
grew the Electronic industry and new electronic devices were made. The transistor was
developed when scientists used semiconductors. The use of semiconductor devices like

7

8 CHAPTER 1. INTRODUCTION

transistors and diodes reduced the size of computer. Then came the Integrated Circuits
(ICs). One IC could accommodate several transistors. The size of the computer is again
reduced. Then LSI (Large Scale Integration) and VLSI (Very Large Scale Integration)
technology were developed. Hence an IC can now accommodate several thousands of
transistors on itself. Now computer made its way to Desktop and became affordable.

As the computer became smaller and smaller, and HLLs were introduced its cost
decreased and more people started taking interest in it. As it was difficult to operate
a computer by making a combination of switches On or Off, some scientists started
developing alternative methods. They added a keyboard, (which is like typewriter key-
board) a suitable output device that can print the output on paper, etc.& also software
to control them. In this state even they used to program the computer in 0 and 1. Pro-
gramming in 0s and 1s are pretty difficult. Hence they developed some easier means.
The outcome of this effort is assembly language. Now they are free from punching 0s
and 1s. But programming in Assembly Language is not so easy task. It had its won
drawbacks too. So they started developing high-level languages.

The first programming language was developed for scientific community only. It
is FORTRAN, which stands for Formula Translation. Then the large business houses
showed some interest in computer. To satisfy their need COBOL (Common Business
Oriented Language) was developed. As the cost of computer slashed with every new
technology, Common man got interested in computer hence the computer found its way
to home. Now layman is not going to program in either of the languages mentioned
above, because he does not need those things. So a separate easy to understand normal
English like programming language was developed which is known as BASIC. BASIC
stands for (Beginners All-purpose Symbolic Instruction Code). It is a very good lan-
guage we can say from the point of ease of programming and simplicity. Still it lacks
some features like modularity. To implement modularity in computer language sci-
entist developed another language known as PASCAL. It is a very good modular and
structured language. Still it lacks features for system programmer. Hence to satisfy
their need C-language was developed.

1.2 History and Features of C
C language was developed by a research group at AT&T Bell labs, which demonstrated
the feature to program system software in a high level language. The designers of this
language were Denise Ritchie and Brian Kernighan. They developed this language on
a PDP-7 machine made by DEC corporation. The whole translator (compiler) for this
new language was written in assembly language of PDP-7. When they had a work-
ing compiler for their new language C, they rewrote the compiler in C again. When
DEC announced the PDP-11, by only changing the code generator section they got a C
compiler for the new machine.

C is designed in such a way that everyone can use it, from a student to a profes-
sional; from a layman to a programmer. Capability of this language, one can say is
unlimited, as 90% of the software spectrum can be covered or developed in C. It is
portable that is if a program is written for some platform (system) it can be easily
taken to other platforms. As it is a High-level language, it is similar to normal English.

1.3. COURSE DIRECTION 9

Besides its feature of being a high level language it has several feature of low-level
language. So it is treated as a mid-level language or hybrid language.

1.3 Course direction
The approach I intend to use is to learn programming in C. This is not intended to
teach theoretical aspects of C. So you may notice some broken links in topics. Those
are because I think it is important that you the reader should learn to write program
first. Then we should discuss the aspects when we feel comfortable. Below is a list of
the things we will see in this course.

• Overview of programming.

• A basic C program to demonstrate the different parts and start the fire of baptism
in you.

• Fundamental data types, and there representation.

• Simple arithmetic operators and simple logical operators,

• Discussion of branching statements. (If...else, nested if, switch...case)

• Loops.

• Compound data types. (Arrays, string, Structures and unions)

• Functions definition and use.

• Pointers. (Relation between arrays and pointers, pass by reference, pointer to
structures, function returning pointers)

• Advanced concept in C

10 CHAPTER 1. INTRODUCTION

Chapter 2

Overview Of Programming

2.1 Computer based Problem solving

2.1.1 Introduction
Computers are mere machines. They cannot do any thing of there own, hence must be
instructed what to do. This set of instruction is known as program. The programs are
written in different programming languages. Imagine while talking to a shopkeeper if
you talk physical specification and the internal working of a computer then will he un-
derstand. So you the first person you are intelligent enough to switch the context. The
same thing happens with the computer. For different purpose different programming
languages are used.

2.1.2 Problem definition
Real life computer programs are not written for demonstrating the algebraic functions
or how a logical expression is evaluated. They generally developed for the requirement
of client. As an example, the client is a big manufacturing unit, then the requirement
maybe to develop an application which can be helpful to track the raw material in hand,
market requirement of finished product, cost analysis, supply tracking, collection of
payments and pending payments.

Here the requirement stated above is a broad problem statement. Generally this
kind of problem statement is broken into sub statements and modules are written to
implement them.

2.1.3 Use of example for problem solving
When we are in junior school our teacher used to give us example like we have 5
apples and we sold 3 at rupees 4.00 each and the rest 2 apples are eaten by us. At the
end we saw we have no profit no loss so we were instructed to find out what is the cost
price. Similarly here in computer programming we have to consider examples. For the
problem of the large production unit you can take example of a small countryside hotel

11

12 CHAPTER 2. OVERVIEW OF PROGRAMMING

or even a tea stall near you. The nature of requirement is same if you watch carefully
you can understand that. So basically if you develop an application for a tea stall then
that application can work for a large production unit with minimal modifications. When
ever a problem looks critical then search for the similarity with a small problem then
the approach to the solution will be easier. This method is known as prototyping.

2.1.4 Similarities between problems
In above example the application for tea stall is similar to the application needed by the
large production unit the basic logic is same but the program output will be definitely
bigger in case of production unit. Like a paper boat and a real boat uses same principle
to float but they cannot be same. Using matchbox you design nice flats but you cannot
live inside that.

2.1.5 Problem solving strategies
You got some idea in previous sections. We discussed about modules and binding
them in to a single program. This method, which involves breaking up into modules
and combines them to make a finished product, is known as ’divide and conquer’. Con-
sidering the approach needed to solve a problem there are 2-types of ways top-down
and bottom-up. In top-down approach one goes from the beginning using predefined
set of rules, whereas in bottom-up approach the result is known first then we come to
the beginning.

2.2 Program design and implementation issues
We already know that writing real life application is not a easy job though it is not
impossible. For this there are certain well-defined ways and approach present which
one has to follow.

2.2.1 Programs and algorithms
Programs are nothing but a set of executable instructions. Does it mean a set of instruc-
tion of any combination? NO so we can modify the definition to it is a set of instruction
but having a goal. This means the program does something useful or fruitful. The way
any goal is achieved from an initial condition is known as algorithm. In other words
algorithm is the systematic way or set of rules which when followed at initial condition
leads to the result.

2.2.2 Top-down design and stepwise refinement
The top-down design is approaching the problem from the data given and reaching at
the solution. Recall your high school algebra, in the assignment you start a problem
from the left hand side and arrive at result on right hand side. Top-down design is
the same. Just think of a situation, you have to reach at Tajmahal. It is obvious you

2.2. PROGRAM DESIGN AND IMPLEMENTATION ISSUES 13

cannot reach there by staying inside; hence you have to get out of your apartment.
Tajmahal is not outside your apartment, so you have to take a cab. If you are a resident
of Agra in India then this is sufficient. If you are from Texas, USA then the process is
different. You have to reach the airport take a flight to India then arrive at Indiragandhi
International Airport, Delhi. Go to a hotel, book a room get refreshed, ask for a travel
agent and go to Agra and see the Tajmahal.

Well the above example is actually not meant for your travel plan. It shows the
way the top-down approach works. And it also shows how logically we are heading
our way to the solution. In every step we are closer to the goal and we make a positive
advance.

2.2.3 Construction of loops-basic programming construct
Programs are not always simple or straightforward. Some time it is needed, some
thing is to be repeated. This repetition is known as loop or in other words the repeated
execution of a block of statements is known as loops.

Every loop must satisfy some conditions, those conditions are known as loop-
condition. If those conditions are not satisfied then either the loop will not be executed
or the loop will be an infinite loop.

A loop has 3 parts; they are loop initialization terminal condition and lastly the
re-initialization. The repeating statements are placed in-between these three parts.

We will see an example of loop. In the example of visiting the Tajmahal, if the
flight is delayed then what can be done? In that situation we can repeat some of our
activities like go to snacks bar and bring a cup of coffee, comeback wait for the flight
if flight has not arrived and coffee is finished repeat the activity again. Here in the
above statement "if flight has not arrived" is the check for looping. The second part
"and coffee is finished" is also determines the looping but it is auxiliary. The initial
condition in this example is "delay in flight arrival". The terminating condition is the
"arrival of flight".

2.2.4 Implementation
Modular design is the key to successful program implementation. The modular design
means breaking up into smaller parts. Each part is now a module, which can be devel-
oped independently. And at the end they can be combined to make a finished product.
We have already discussed this in problem solving strategy.

In a program there will be several variables. Hence the variable names should be
given in such a way that one could understand the purpose of that particular variable.
If a variable is needed to store the roll number of student it could be named "studroll
or nroll" instead of "cat or dog".

It is a practical experience, that if a program is written and tested ok, and after few
days the source code is examined again; it becomes difficult to understand what the
code is doing. Whenever a program is written it should be sufficiently commented and
documented, else it is very difficult to maintain or upgrade the program latter.

The last stage is the program testing. This is a quality testing part too. The testing
of finished program reveals several things as the consistency or in-consistent parts.

14 CHAPTER 2. OVERVIEW OF PROGRAMMING

Preliminary test at development site reveals only logical and programming errors. The
client site tests reveal the shortcomings and inadequacies in the program.

2.3 Programming environment
In above paragraphs we have discussed about programs and how to design them. Con-
sidering that we have already designed a program, so how to put it it in to the computer?
Well, there are programming languages and their translators to computer readable for-
mats available. We will discuss briefly here.

2.3.1 Programming Language Classification
Programming languages are broadly classified in to 2 types.

• Low level

• High level

Low-level languages are machine language and assembly language. High-level lan-
guages are BASIC, FORTRAN, PASCAL, C and there are several to mention. Machine
language is just numbers, one has to code in binary numbers if he/she needs to program
in machine language. For all other language there are translators available.

2.3.1.1 Assemblers

Translator for assembly language is known as assembler. This translates the assembly
language into machine language (binary).

2.3.1.2 Compilers

Compilers are those, which translate high-level language into assembly or machine lan-
guage. They have some diagnostic features to help rectify errors. Compilers generate
an executable or machine understandable code and store it in a file.

2.3.1.3 Interpreters

Interpreters are like compilers but they do process one line of source code at a time if
any error exists then it will display that error and wait for user interaction. The inter-
preters don’t generate an executable file. They translate the source code into machine-
readable instructions in memory and execute them from memory.

2.4 Summing up
This chapter gives a brief idea on what programs are, how they are designed and how
they are executed. We will discuss it in later chapter too.

Chapter 3

C Programs

3.1 A small program
Every programming language has some provision for 3 things. Those are Input, output,
processing. These are provided as library functions. In C, also these are present. The
basic input statement in C is scanf (), for output printf () and for processing we use
several constructs or library function. Let us now write a very small C program and
analyze it.

#include<stdio.h>
main()
{

printf("Hey U...\n");
}
Enter this above program in a text editor, save it as hey.c, and then depending upon

your compiler installation compile it, link it, and then execute it. Let me describe the
process for TURBO-C and gcc under Linux.

3.2 Using your compiler

3.2.1 For turbo C
• At dos prompt type tc.

• Open File menu select New.

• Enter the above program. Remember the sequence. It is
valid for all programs

• Again open File menu select Save

• In the dialog box shown enter hey.c

• Now choose Compile menu select compile.

• If there is any error then it will appear in message window.

15

16 CHAPTER 3. C PROGRAMS

• Correct those.

• If no error then choose Run menu select Run press enter.

• Then press ALT+F5 this will display you the executed result

3.2.2 For gcc (Linux/djgpp)
• At $ prompt type vi

• Press I to enter insert mode

• Enter the program

• Press ESC key

• Press: press w then type hey.c

• Press: press q

• Now you will be in $ prompt

• Type gcc hey.c -o hey it will compile and link the file.

• Now at $ prompt type. /hey

• This will display the result.

Enough said regarding compiling this little program. If you need more about your
compiler then you should refer to the documentation available with your compiler.
Now let us analyze the program.

3.3 Dissection of hey.c
In the first line we have written #include<stdio.h>, this is a preprocessor directive. For
preprocessor directives consult your compiler manual. Preprocessor directives are not
executable statements; rather they direct the compiler to do something. Here in this
case this instructs compiler to include something called stdio.h. The stdio.h is known
as header file, stands for standard input output header. As the description suggests this
is responsible for all functions doing standard input and output.

The second line contains main (). This is the main entry point to the program.
Every C program has to have this main () if they are designed to be executable. If they
are designed for library then main () is not needed. Here main () is a function, as C
only has functions.

The third line contains a curly bracket ’{’. This is the start of a statement block.
C is a block structured language so a block of executable statements are enclosed with
’{’ and ’}’.

The fourth line is printf("Hey U...\n"); this represents a call to a library function
printf(), with parameter "Hey U...\n". You can guess the call is an out put statement to
print some thing to ’stdout’, yes it is.

3.4. SKELETON IN THE CUPBOARD... 17

The fifth line is to close the statement block. As this is our first program the block
contains only one statement but it can contain as many lines as you can put.

Well you might be thinking to print a simple message why you will do so many
things? Instead of taking pain you can do this in BASIC in one line, right? Yes you
are right here too. But in BASIC you have to take pain to write an operating system, a
compiler or even a dirty and nasty virus. Well as the designer of C say, "C is designed
to be the best tool for system software".

We will now discuss a skeleton of c program. You might be thinking after you
wrote a C program why to bother about a skeleton? Yes, It is necessary, because we
have left out so many things of a C program, That is many parts of C program we have
over looked.

3.4 Skeleton in the cupboard...
/*This is a skeleton of a C program.

This is a comment block. You need to write
Comments in your C programs as much as you can
Comments are necessary for understanding the
program */
/*After comments you should include header files*/
#include<stdio.h>
#include<myheader.h> /*I have a header known as myheader.h*/
/*Here define the macros and constants*/
#define PI 3.14285 /*Constant PI */
#define eat(x) {(x)*(x)} /* a macro function to do my things*/
/*Define global and external variables here */
int ram, hari; /* global integer type variable */
float demi_moore; /* global float type variable */
char abdul_seikh; /* global char type variable */
/* here you have to define function prototypes or the functions,
which you will be using in your program */
void print_msg (char *msg); /* this is a prototype of a function which
is defined later in the program */
int time2(int n) /* this is a function defination*/
{

return (n*2);
}
/* now it is time for the main() */
main()
{

/* define local variables for main */
int k,l;
float area;
float peri;
/* do processing things here */

18 CHAPTER 3. C PROGRAMS

printf("Hello this is a skeleton\n");
printf("Enter the radius of a circle : ");
scanf("%d",&k);
area=PI*eat(k); /* PI we defined, macro eat calculate square*/
printf("area of circle with radius %d is %f\n",area);
l=time2(k); /* time2 multiplies with 2 */
peri=PI*l; /* PI multiplied by 2 times radius */
print_msg("Perimeter of circle : ");
printf("%d for radius %d\n", peri,k);
/*our processing ends here ...suppose... */

} / main() ends here */
/* we have to define the function bodies for which we have prototyped
in the beginning */
void print_msg(char *msg)
{

printf("%s",msg);
}
/* this ends the skeleton */

The skeleton given above is just for reference and I don’t say this is complete. This
is generic for many small programs. But you can see certain variation of this one and
also there may be certain addition too. So do not mistake this as the only template
available. With this skeleton you should be able to distinguish different parts of C
program, also can write your small C programs too.

As we have seen the skeleton and a small program to see how things work, we have
encountered certain new things, which seems to be unknown to us. We will discuss
them in the next chapter.

3.5 Summing Up
In this chapter we saw only 3 things.

1. A small program to print a message.

2. How to use TURBO-C and gcc compiler.

3. A skeleton of C program to show different parts.

Chapter 4

Data Types

In the last chapter we have seen a skeleton a small program with some analysis too.
But that analysis does not clarify much. We have seen in the skeleton something as ’int
k, l’ and ’float area’. So what do they mean? Why they are written like that? Well, we
will see them here and some part in a latter chapter.

4.1 Data
Before you understand that int float etc. you must know something else. So now you
ask yourself what are those, which follows int or float? I mean what are k, l and area?
Which are defined in skeleton. Well they are variables. If they are variables what they
do? Good... as the name suggests they can have values. You can change their values
too. But in contrast PI, which is defined in the beginning, cannot be changed. So now
we encounter another thing, which cannot be changed, it is known as constant. Well
the PI, k,l and area are the names. In those spaces you can put your name, your pet’s
name, your friends name etc. These names can store some values. Those values are
DATA. Now any sort of data can be stored in any variable? NO, NO, NEVER... Like
you cannot keep your car or bike in your bedroom and sleep in the garage. In the same
way there are some distinctions or types. These types are known as ’Data types’.

4.1.1 Classification of data
Commonly there are 2 types or class of data. They are Pre-defined and User defined.
We will discuss user-defined types somewhere else in latter chapter but pre defined
type now.

Pre defined data type has five classes namely ’character char’, ’integer int’, ’real
numbers float’, ’double precision real double’ and ’void’. As the name suggests ’char’
type can store an ASCII character. ANSI standards recommend a single byte (8-bit)
for its representation. Type ’int’ can store any integer value, it is proposed to have
two bytes (16-bits) but it should not be assumed that ’int’ type is always 2-bytes (16-
bits), depending upon compiler installation it may vary. Real number type values are

19

20 CHAPTER 4. DATA TYPES

stored in ’float’ type variables, the proposed size of ’float’ is 4-bytes (32-bits), but it
can change. Double floating point ’double’ can store values of real numbers of size
8-bytes, it may also change depending upon the installation. Type ’void’ is special type
used in generic casting of pointer or used for functions, which do not return anything.

4.1.2 Type Modifiers
These basic types again have some subclasses to modify their range. Namely:

• signed

• unsigned

• short

• long

The modifier ’signed’ and ’unsigned’ applies to ’char’ ,’int’ and ’double’ type, ’short’
and ’long’ to ’int’ type, ’unsigned’ and ’long’ are applicable to ’double’.

Depending on the installation type the range also varies. That is for a 16-bit plat-
form the size is different from a 32-bit platform. To know the range of your compiler
consult your compiler manuals. Bellow is given a table of ranges for my installation of
compiler.

Type Length Range
Unsigned char 0 to 255

char 8 bits -127 to 128
enum 16 bits -32,768 to 32,767

Unsigned int 16 bits 0 to 65,535
short int 16 bits -32,768 to 32,767

int 16 bits -32,768 to 32,767
unsigned long 32 bits 0 to 4,294,967,295

long 32 bits -2,147,483,648 to 2,147,483,647
float 32 bits 3.4 * (10**-38) to 3.4 * (10**+38)

double 64 bits 1.7 * (10**-308) to 1.7 * (10**+308)
long double 80 bits 3.4 * (10**-4932) to 1.1 * (10**+4932)

The Datatype Table.

4.2 Identifiers
The lexical meaning of identifier is who identifies. The variable names, function names,
labels and other user-defined things are identifiers. The rule to define an identifier is,
it should start from lower case alphabet or underscore and subsequent characters may
be underscore, alphabets or digits. If any other things are used then it is incorrect.
Secondly keywords cannot be used as identifiers. Lastly as C is case sensitive case
plays a greater role. Hence XYZ, Xyz, xYz, xyZ, xyz are different.

4.3. VARIABLES 21

4.3 Variables
We now know the data-types; we have used them in the skeleton. So now we will see
how to use those data-types. In previous section we have discussed what is the meaning
of variables that is their value can change. Now we will see how to define them and
different types of variable

<Data type> variable_name;
<Data type> variable_name1, variable_name2,...;
Above two syntaxes are used to define variables. Data type can be any data type,

variable names are those, which we will be using as the replacements for data values.
The convention for variable name follows the convention of identifiers.

Examples of proper variable naming:
int a,ab,muler;
char Ac, cA;
float A,_a,_A,_muler;
int muler1,muler_1,muler_,_muler_;

Wrong way to define variable names:
int 1,1a;
int a@, b#, c+a;
float if, auto;

4.3.1 Variable Types
Depending on data types variables can be of 5 types, which we have seen earlier. But
depending upon the position it can be of 3 different types.
These are:

• Local

• Global

• Formal parameters

Following is a discussion of these types.

4.3.1.1 Local Variables

Local variables are those, which are defined in a function or block. Their effect is
limited within the block only. They are also termed as ’automatic’ variables. They
come into picture only when the block of code where they are declared is executed.
(A block of code is enclosed by ’{’,’}’).After execution of the block they are removed
from memory.

void do_it()

22 CHAPTER 4. DATA TYPES

{
int x;
....
....
....

}

Here ’x’, which is integer type, is local to do_it() function. It cannot be realized outside
the block.

4.3.1.2 Global Variables

Global variables are those, which are available throughout the program’s execution.
They are not defined inside any block. They exist in memory until the program is in
memory.

#include <stdio.h>
int k;
void do_less()
{

printf("\n k= %d\n",k);
k=19;

}
main()
{

k=91;
do less();
printf("\n now k= %d\n",k);

}

In the above example k is not defined in any block but in the beginning. So it is
available throughout the program.

4.3.1.3 Formal Parameters

Formal parameters are those, which are passed to functions. They are only available in
that function body. They behave like any other local variable declared in that function.
You can change their values they get from calling function too. They will be discussed
in a later chapter.

4.4 Access Modifier
There are two access modifiers. They are ’const’ and ’volatile’. These must precede
the type specifier. Access modifier or qualifier changes the way a variable behaves.

4.5. STORAGE CLASS SPECIFIER 23

4.4.1 const
The ’const’ modifier says the compiler that it may not be modified by the program. But
it can be modified by system functions like timer interrupt. A const variable can get
its value from an explicit assignment too. For this type compiler is free to place the
variable in read only memory (ROM).

const int my_var=10;

In the above expression my_var is a variable of type integer and protected from
being changed by the program and has been initialized to 10.

4.4.2 volatile
This modifier changes the way the variable is changed. That is it can not be changed
by the program like ’const’, and can be changed by some external occurring like in-
terrupt or can be modified by the lower level function which interact with hardware or
operating system. It is also possible to add ’const’ before ’volatile’.

const volatile int tick;

4.5 Storage Class Specifier
These are to modify the properties of the variables defined. There are four such speci-
fiers in C language. They are:

• extern

• static

• register

• auto

Storage class specifiers are used in the following manner:
<storage class specifier> <data type> var_name;

4.5.1 extern
The ’extern’ specifies, the variable used here is defined in some other file, which is a
part of the project (program). Take an example of a program, which has more than one
file of C code. We need some variables in both the files. So we can compile those files
separately and link to a single executable. If we define the same variable in two files
as globals then this will solve our purpose but at the link time there will be an error,
which says the symbol, is defined more than once. Ultimately the solution is to use the
variable but do not define it. Now how to achieve it is the question. The way out is use

24 CHAPTER 4. DATA TYPES

extern in other file and defines it in one file. The general use of ’extern’ is:

extern char x; /* defined in subsequent files where x is used*/

There is another way ’extern is used. It can be used to refer a global variable in a
function but it is not needed.

4.5.2 static
static int k;

’Static’ variables are permanent like global variables. Except they are not known to
outside of their block or file. Still their values are preserved between successive calls.

’Static’ variables are of two types:

• ’local static’

• ’global static’

4.5.2.1 Local static variables

Local static variables are those, which are defined inside a block or function. They are
necessary in certain conditions where it is required to keep track of previous value of a
variable.

4.5.2.2 Global static variables

Global static variables are which are defined out side any block like global variables.
The difference is the global variable is visible to outside the file but static global vari-
able is not. It also retains the value when the module is used subsequently.

4.5.3 register
This keyword instructs the compiler that the variable is transient hence directly put it
in to the CPU register for manipulation. But modern compiler assumes it as ’process
as first as possible’. Traditionally the register specifier is used with ’char’ or ’int’ type
but practically it can be used with any type of variable.

register int sum;

Here sum is a variable of type integer and storage class is register.

4.6 Summing up
In this chapter we have discussed:

Data types
Variables

4.6. SUMMING UP 25

Storage class
We also discussed types of variables depending uponThe position of declaration,Modifiers

and Storage classes.
In the next chapter we will see the operators, which can be applied to these variable

types.

26 CHAPTER 4. DATA TYPES

Chapter 5

Operators

All programming languages have operators. These operators operate on constants or
variables. If there would be no operators then there is no need for programming. Op-
erators are broadly classified in two categories.

They are:

• Arithmetic

• Relational and Logical

As there names suggests the arithmetic operators are meant for arithmetical calcula-
tions and logical operations are meant for logical calculations.

5.1 Arithmetic operators
Arithmetic operators are those, which you use, in simple arithmetical calculations.
They are addition ’+’, subtraction ’-’, multiplication ’*’ and division ’/’. Arithmetic
operators can be used with almost any type of predefined data types. Besides these
operators C has modulus ’%’, increment ’++’ and decrement ’–’ operator in arithmetic
operator category.

You all well versed with all but last 3 operators. Still There is a point to discuss
them in brief. Addition operator adds 2 numeric values or numbers. But it also can add
2 characters too. Output of adding 2 characters is not the concatenation of the operands
but a number. If that number is within 255 then it can be stored and represented as a
character else as an integer. Same thing happens to all other arithmetic operators too.

As an example:

char x, y, z;
x=’A’; /* ’A’ means character constant A =65 in decimal*/
y=’z’; /* ’z’ is 122 decimal ascii */

27

28 CHAPTER 5. OPERATORS

z=x+y; /* z= 65+122 that is 187 */

Now for the last 3 operators. The modulus operator finds the remainder in a divi-
sion. It can be only applied to integers and character type. Let us see an example.

int i,j,k;
i=10;
j=3;
k=i%j;

Here value of k will be the remainder of the division 10 and 3 that is 1. This
operator is used to check the divisibility.

The increment and decrement operator increases or decreases the value of a vari-
able. depending on the occurrence they can be pre or post increment or decrement
operators. That means if ’++’ or ’–’ happens to precede the variable then it is pre, if
they happen to follow the variable name then they are post. There is an interesting
thing to remember the post increment is done after the execution of the statement.

Example:
int x, y, z;
x=10; /*assigned 10 to x*/
y=x++; /* assigned x++ to y ?? */
z=x; /* assigned x to z ?? */

Guess the values of y and z. did you guessed y=11 and z=11? If so then you are
WRONG. y=10 and z=11 is correct. Let us analyze the example. First we declared and
assigned 10 to x. Then in the third line we wrote y=x++ that means assign x++ to y.
Yes here it is post incremented. So evaluation of x++ is done later. So y is assigned 10.
Then x is incremented to 11 and in the last line we assign z with the value of x that is
11 now, so z is 11. The above holds good for decrement too.

Assume in the above example if instead of post increment it is pre increment then
what would be y and z? the would be 11 both. Because pre increment is calculated first
then the statement is executed.

5.2 Relational and Logical Operators
This category includes 2 things relational operators and logical operators. Relational
operators are greater ’>’, greater or equal ’>=’, equality ’==’, lesser ’<’, less or equal
’<=’ and not equal ’! =’. These operators are used to compare two operands. Hence
these are binary operators. They compare operands on both the sides of them and re-
turn a truth-value. A truth-value is either TRUE=1 or FALSE=0.

s1 s2 > >= < <= == !=
————————————————————————————————–

a=10 b=5 T T F F F T

5.3. MISCELLANEOUS OTHER OPERATORS 29

a=5 b=5 F T F T T F
a=3 b=6 F F T T F T

T=TRUE F=FALSE

Logical operators are those, which evaluates the logical Truth-values. They are
logical and ’&&’, logical or ’||’ logical not ’!’. Let us see some examples.

a=10 b=200
hence a>5 is true, a>b is false
(a>5)&&(a>b) false
(a>5)||(a>b) true
(a>5)&&(!(a>b)) true
s1 s2 && ||

——————————————
T T T T
T F F T
F T F T
F F F F
s1 and s2 are 2 statements
T=TRUE F=FALSE

The logical not operator changes the truth-value of the statement.

s !s
——————–

T F
F T

The relational and logical operators are used in conditional statements and also in
loops which we will be dealing soon.

5.3 Miscellaneous other operators
Besides these arithmetic and logical operators there are other operators too. They are
conditional evaluation ’?’, coma ’,’, address of ’&’, value at ’*’ and element access dot
’.’, ’->’. There is also another category of operators known as bit wise operator.

We will discuss the address of ’&’ and value at ’*’ operators in chapter dealing
with pointers. The dot ’.’ and ’->’ operators in user defined data types. But the rest of
the operators here.

The ’?’ operator, evaluates a condition then executes statements depending on the
truth-value of the first statement. Generally a colon accompanies it ’:’. The colon sep-
arates 2 other statements, which are dependant on the truth-value of the first statement.
Syntax for ’?’ operator is:

30 CHAPTER 5. OPERATORS

expr1?expr2:expr3

If we expand the above statement in english it will be " If expr1 is true then do
expr2 else do expr3". Here expr2 and expr3 are expressions, which can be evaluated.
That is if expr1 is true then value of expr2 is the value of the expression and if expr1 is
false then value of expression is value of expr3.

y=(x>9) ? 10 : 20;

This expands to if x>9 is true then y=10 if x>9 is false then y=20.

The coma ’,’ operator joins several operations together. The left hand side is always
evaluated as void. The right side expression is always value of expression.

x=(x=3,y=3,x+y); /* x will be 6 here*/

5.4 The () and [] Operators
These two operators are generally overlooked as they are used whenever needed. The
() operator is used to increase the precedence of an expression to be evaluated. Like in
this expression a+b*c-d/e, d/e will be evaluated first, then b*c will be evaluated then
a+(b*c) and finally a+(b*c)-(d/e) will be calculated. But if we place brackets like in the
following expression (a+b)*(c-d)/e then a+b will be evaluated first. Hence () increased
the precedence of the addition.

The [] operator is used in arrays only. So we will not discuss it here. It will be
discussed in detail when we will discuss arrays.

5.5 Bit wise operators
These are a set of operators, which are intended for low-level operations. By low-level
operation here we mean is setting, testing or shifting of bits in a byte. These operators
are only used in character type or integer type. It cannot be used for any other type.

Bit wise operators include AND ’&’, OR ’|’, NOT(one’s complement) ’~’, Exclu-
sive OR (XOR) ’^’, left shift ’< <’ and right shift ’> >’. AND operator here finds the
ANDed value of its operand.

char ch, ch1;
ch1=ch & 0x0f; /* mask high nibble */

It chopped off high nibble of ch and returns the lower nibble value in ch1. The OR
operator, similarly finds the ORed value. In the above example if we replace ’&’ with
’|’ this will make lower nibble to be always 0xf. Let us check XOR ’^’ operator. For
this we have to take actual values for clarity.

5.5. BIT WISE OPERATORS 31

ch=0x69; /* 0x69= 01101001 */
ch1=0x50; /* 0x50= 01010000 */

/* XOR ’^’ ————— */
ch2=ch^ch1; /* 0x39= 00111001 */

So in the end ch2 will have the value 0x39. The One’s complement operator is used
to complement the bits present in the operand byte.

ch=0x59; /* 0x59 = 01011001 */
ch2=~ch; /* ~(0x59)= 10100110 = 0xA6 */

Bellow is a table to illustrate these operations.

a b a&b a|b a^b
——————————————————

1 1 1 1 0
1 0 0 1 1
0 1 0 1 1
0 0 0 0 0

————————————————————–
Truth table for AND OR XOR

a ~a
———————-

1 0
0 1

———————-
Truth table for One’s complement NOT

Shift operators shift the bits towards left or right depending whether it is left or
right shift. The number of shift is on the right hand side of the shift operator. The
syntax of shift operator is:

<Variable or constant> shift operator <number of bits to shift>
variable is character or integer type shift operator is left shift ’< <’ or right shift

’> >’ number of bits to shift is an integer less than 32.

0x05< <1 = 0x0A 00000101< <1=000001010
—————————————————–^This ^This is added
—————————————————is cutoff
0x05< <2 = 0x14 00000101< <2=00010100
0x04> >1 = 0x02 00000100> >1=00000010
0x0C> >2 = 0x03 00001100> >2=00000011

If you have watched carefully the examples above then you must have noticed
shifting left by one bit multiplies the number by two. For 2 bits shift the result is

32 CHAPTER 5. OPERATORS

4 times the number. Similarly right shifting one bit result in half the number being
shifted and if shift left by 2 bits the result is one fourth of the original number.

5.6 Type casting
Type casting is done to force a type to change into other type. The casting comes handy
when a particular type is needed as result. The syntax is:

(type to force to) expression
type to force is any valid type.
Example:
char a;
—–
—–
(int) a = 65;

5.7 Precedence table
Highest

() [] -> .
! ~ ++ – - type-cast value at address of size of
* / %
+ -
< < > >
< <= > >=
== ! =
& bit wise
^
|
&&
||
?
= += -= *= /=

Lowest

5.8 Summing Up
In this chapter we read about operators. And how they are used. We also discussed the
low level operators, which are known as bit wise operators. The address of ’&’ and
value at ’*’ operators are to be discussed in pointer chapter and the dot ’.’ and arrow
’->’ operators will be discussed in user defined data types.

Chapter 6

Branching

Branching means changing the flow of the programs. By changing the flow of program
it means skipping some executable statements. This skipping is of 2-types, uncondi-
tional and conditional.

6.1 goto
The unconditional branching construct skips the executable statements what ever the
case may be. This is achieved by abruptly jumping to another statement leaving aside
the next statements. This can be done by go to statement without any condition.

statement_1;
statement_2;
statement_3;
go to label_1;
statement_4;
statement_5;
label_1: statement_6;
statement_7;
...
...

In the above case the program flow jumps to statement_6 without executeting state-
ment_4 and statement_5. This is not necessary in normal programming and it is advised
NOT TO USE goto at all.

6.2 If...else
Now let us see the conditional branching. Before we do that we should check what is a
condition. A condition is a truth-value of an expression. Of course the expression is a

33

34 CHAPTER 6. BRANCHING

logical one. To use this conditional construct. We use ’if...else’ statements.

if(condition)
{

statements
}
else
{

statements
}
In the above syntax the else part is optional. But it cannot be avoided always. Let

us see some examples.

int a, b;
printf("Enter 2 integers\n");
scanf ("%d%d", &a, &b);
if(a<10)
{

b=20;
}
printf("a=%d b=%d\n");

The above program fragment prints the value of b depending on the value of a. For
any value of a less than 10, b=20 is printed. Yes the value we input to b is lost. But for
any value of a above 10 the value of b we have supplied is printed.

Now let us check for the else part. In above case else is hidden. By that it is meant,
if a is less than 10 then b is 20 else b is whatever value we have given. Let us check
another example.

int a;
printf("Enter an integer ");
scanf ("%d", &a);
if (a%2)
{

printf("%d is an even number\n");
}
else
{

printf("%d is an odd number\n");
}

Here else is compulsory. Because if we omit else and a happens to be an even
number then both the printf statements will be executed. So we get an ambiguous
answer.

6.3. NESTED IF...ELSE STATEMENT 35

6.3 Nested if...else statement
The if else statements can be nested, that is the if statements can be chained. To achieve
this we uses if...else if... construct.

if(condition)
{

statement block
}
else if(condition2)
{

statement block2
}

6.4 switch...case...
This is another type of branching statement. One can say it is analogous to ’nested if’
statement or a group of if statements.

switch (condition)
{

case value_1: action to be performed
break;

case value_2: action to be performed
break;

...

...
default: default action

}
We can write the above using if as following:

If (condition==value_1)
{

action to be performed fro value_1
}
else if(condition==value_2)
{

action to be performed for value_2
}
...

But mark the presence of break, it is a key word in c. This is used in Switch
statement to exit out of the block when a matching case is found. Suppose by mistake

36 CHAPTER 6. BRANCHING

we omit the break in one case what will happen?? Well the execution of actions will
continue until a break is encountered. Remember to use break judiciously.

6.5 Summing Up
In this chapter we read:

1. Conditional and unconditional branching

2. Go to statement and label;

3. if...else, nested if...else statements

4. switch (..) case statement.

In the next chapter we will see how loops are made.

Chapter 7

Loops

Till now we have seen conditional branching, now we will see how to execute a group
of statements or a single statement repeatedly. Let us now recall the ’go to label’
statement and use it to form a loop.

main ()
{

int i=0;
label_1:
printf("Hello world\n");
i++;
if (i<5)
go to label_1;

}
In the above example the printf () statement will be executed 5 times. This implants

a simple loop. Let us analyze how this loop works. If you mark the code then we are
declaring a variable ’i’ and initializing it to be 0. Then we put a label to jump to. Then
an ’if’ statement, which checks the value of the variable ’i’ with 5, then we put a go
to statement. Here if the value is 5 or more the go to statement will not be executed.
Otherwise it will loop through the label. In the above code ’i’ is known as loop counter,
the if statement is known as loop condition, i++ is loop reinitialization. CAUTION:
Never use back jump using go to. Besides this crude looping C language has keywords
to implement looping. They are: for, while, and do...while. We will discuss them one
by one.

7.1 for loop
The for loop is the most commonly used in C. the syntax of for loop is for(counter
initialization; condition; reinitialization of counter)Unlike the above code all the things
needed by a loop is present in the line where the loop is started. If everything is present
then where is loop body? Ok in case of for loop the loop body follows the loop decla-
ration. And it is enclosed in a block.

37

38 CHAPTER 7. LOOPS

Let us rewrite the above loop:
main ()
{

int i;
for(i=0;i<5;i++)
{

printf("Hello world\n");
}

}
The output of both the program fragments are same. So the general structure of a

for loop is:
for(initialization; condition; reinitialization)
{

statement block;
}
Note here the number of times loop will execute is dependant on the initialization,

condition and re initialization.

7.2 while loop

In contrast, while loop is less common and more or less similar to the go to imple-
mentation of loop. In case of while loop, the loop counter is initialized before the loop
body and the condition is checked in the beginning, then the loop body starts. The
reinitialization of loop counter is done inside the loop body. The structure of while
loop is:

initialization of condition;
while(condition)
{

statements to be executed;
reinitialization of condition;

}
Let us re write the go to example using while loop.
main()
{

int i=0;
while(i<5)
{

printf("Hello world\n");
}

}
This gives the same output as that of above go to and for examples.

7.3. DO...WHILE LOOP 39

7.3 do...while loop
The last looping structure is do...while loop. It is basically the while loop but starts
with ’do’ and ends with ’while’. Other things are same as that of while loop. the syn-
tax for ’do...while’ loop is:

do{
loop body;
reinitialization of loop counter;

}while(condition);

Let us rewrite above loop example using ’do...while’ loop
main()
{

int i=0;
do{

printf("Hello world\n");
i++;

} while(i<5);
}

If we carefully judge the code the above loop will execute at least once. This is
because we check the condition at the loop end.

7.4 Nested loops
Loops can be nested. This means a loop can contain another loop. Nesting facility is
available in all the three loops. We will see them now. In a nested loop the inner loop
executes faster the outer loop will continue when inner loop is executed.

7.4.1 Nested for loop

For example complete this code and execute:

main()
{

int i,j;
for(i=0;i<3;i++)
{

for(j=0;j<4;j++)
{

printf("inner counter=%d outer counter=%d\n", i,j);
}

}

40 CHAPTER 7. LOOPS

}

See the output of this code and verify what is happening. If you are careful enough
then you could have found out when ’i’ remains same ’j’ varies from 0 to 3. So this
implies the inner loop executes faster.

7.4.2 Nested while loop
A nested while loop will be like this:

main()
{

int i=0,j=0;
while(i<3)
{

while(j<4)
{

printf("inner counter=%d outer counter=%d\n", i,j);
J++;

}
i++;

}
}

7.4.3 Nested do...while loop
A nested do loop will be:

main()
{

int i=0,j=0;
do
{

do
{

printf ("inner counter=%d outer counter=%d\n", i,j);
j++;

}while(j<4);
i++;

}while(i<3);
}

7.5 Infinite loop
An infinite loop is a loop, which never ends. This is an error in loop. So you must be
very careful to write loops. If a loop became infinite then it hangs the system. As an

7.6. BREAK AND CONTINUE 41

example let us check the following code

for(;;)
{

printf("Infinite loop\n");
}

while(1)
{

printf("Infinite loop\n");
}

do {
printf("infinite loop\n");

}while(1);

All the above case are infinite loops. An infinite loop can be result from irrespon-
sibly placed condition or no condition at all. But note all condition less loops are not
infinite. Like if you hesitate to put a condition in its default place, then you can place
the condition inside loop body. Also you have to put a ’break’ after the condition to
exit from loop.

7.6 Break and continue
We have seen the ’break’ key word previously in ’switch...case’ construct. We will
discuss it here. A ’break’ statement takes control to the end of the block in which it is
used. It means if a ’break’ statement is encountered then all the executable statements
following it are skipped until the end of that block. Let us check it now:

main()
{

while(1)
{

printf("this is not an infinite loop\n");
break;
printf("This will not print\n");

}
printf("Now out of loop\n");
}

In contrast ’continue’ takes control to the beginning of the loop

main()
{

int i,j;

42 CHAPTER 7. LOOPS

for(i=0;i<10;i++)
{

j=i%2;
if(j!=0)
continue;
printf("%d\n",i);

}
}

In above case the loop will be executed 10 times but it will print only 5 times.
That is it will print only the numbers, which are even. Because if ’j’ which stores the
remainder, if not 0 then the continue statement will be executed. Hence the control will
go to the loop beginning.

7.7 Summing Up
In this chapter we discussed about loops. We also discussed ’break’ and ’continue’
statements. So the points are:

• Loops are used to execute a statement or a group of statements repeatedly.

• A mall formed loop may hang the system.

• A do loop executes at least once.

• Loops can be nested. That is a loop can contain several other loops.

• ’break’ statement exits a loop.

• ’continue’ statement shifts control to the beginning of loop.

Chapter 8

Compound Data-Types

Till now we have dealt with simple data-types. Like char, int, float, etc.. now we will
discuss something about compound data-types. Compound data-types include arrays,
structures and unions. We will discuss them one by one.

8.1 Arrays
Array means a group of similar type of things. In C programming it means a collection
of similar type of data in consecutive memory locations. as an example array of inte-
gers, array of floats etc... The syntax to define or declare an array is:

<data-type> <array name>[size];
Where :
data-type is any valid data-type.
array name is identifier to denote array.
size is number of elements we want to put in array.

Note here the presence of ’[’ and ’]’, if you recall what we have read in operators
you can say these are nothing but ’[]’ operator. The ’[]’ operator is used heavily in
arrays. Let us now define an array.

int my_array [20];

This defines an identifier my_array array of 20 integers. This means my_array is
an array, which can contain 20 integer type values.

8.1.1 Accessing array element
Now we can define an array. So next we will put values in to it. To put a value in an
array cell we have to use the ’[]’ operator again. As an example:

43

44 CHAPTER 8. COMPOUND DATA-TYPES

int int_array[5];
int_array[0]=10;
int_array[1]=30;
...
int_array[5]=100;

Notice here the array cell starts from 0 and go up to the 1 less size specified. So the
maximum cell number in int_array above is 4 (0,1,2,3,4). We can assign values to an
array like we have seen above. Else we can assign values at the time of declaration.

float flt_arr[4]={10.0,20.0,25.3,11.9};

Both these ways are easier for smaller array but these methods are not fit for larger
arrays. This is because; if there are 100 elements in an array, then think of the sit-
uation. So there must be some way to deal with. See above when we were writing
int_array[1]=30, this means we are putting 30 into int_array at first cell. Here 1 is
known as array index. So using any loop we can fill the array.

int i; /*we are defining one integer type variable we
will use it as loop counter as well as array index */

int int_array[5]; /*an array of integer with 5 cells*/
for(i=0;i<5;i++) /* loop to fill the array*/
{

int_array[i]=i*10; /*assign the array elements */
}

From above code it should be clear that using loops to fill the array is easiest and
convenient.

We have entered the value to array cells, now we should be manipulating them else
there is no meaning of array type. Well the array cell can be used as normal variables,
the only difference is we have to specify array index and must use ’[]’ operator. Simi-
larly to get the values from cells of an array we have to use loop with array as we have
used for entering values.

for(i=0;i<5;i++)
{

printf("%d\n", int_array[i]);
}

The above code fragment will print the values stored in cells of int_array.

8.1.2 Multi dimensional arrays
Up to this point what we have discussed is single dimensional arrays. But arrays can
have more than one dimension. Consider a matrix or a determinant. They are 2-
dimensional arrays. Consider a vector in 3-D plane. It is an array of 3-dimensions.

8.1. ARRAYS 45

Think of Einstein he took another dimension time. So to represent vector in his calcu-
lations a 4-D array is needed. More than 4-D arrays are rarely used. They are used in
calculating atomic energy power plants and research institute.The general definition of
a multi dimensional array is:
<data-type>array name[size1][size2][size3]...[size n];

As an example int abc[3][4][2] defines abc to be a 3-dimensional array of integer.
To access cells of this array we need 3 loops one for each dimension. Let us see how
we can access the cells.

int i, j, k, temp;
int pqr[5][6][9];
/*entering data into array*/
for(i=0;i<5;i++)
{

for(j=0;j<6;j++)
{

for(k=0;k<9;k++)
{

printf("Enter a number ");
scanf("%d", &temp);
pqr[i][j][k]=temp;

}
}

}
/*getting data out of array*/
for(i=0;i<5;i++)
{

for(j=0;j<6;j++)
{

for(k=0;k<9;k++)
{

printf("value at cell %d %d %d = %d\n",pqr[i][j][k]);
}

}
}

he above code fragment is capable of reading a number from user store it in a mul-
tidimensional array, and display it.

Here is a point to note. Watch the above code carefully, you will see pqr is an array
of array of arrays. Just watch array is repeated 3-times. Similarly a 2-D array is a
single dimensional array of single dimensional arrays. Hence the following declaration
is valid.

int xyz[3][2]={{1,2},{3,4},{5.6}};

46 CHAPTER 8. COMPOUND DATA-TYPES

8.1.3 Array of characters
We have discussed, an array can have any data type as its element and it is homoge-
neous. This implies an array of character is possible and it is a normal case. So what
is the importance to discuss the array of character?? Well there is a special case. If a
character array has null character (\0) in the end then it is known as a string. A string
can be said as an array of character and the last character is a null character. Example
of string is as common as your name. We will discuss strings in some more detail in
some future chapter.

8.2 Summing up
In this chapter we have read regarding arrays.

• Arrays are homogeneous collection of data.

• Elements of an array are stored consecutively in memory.

• Array can be single dimensional or multi dimensional.

• A multidimensional array can be seen as a single dimensional array of arrays.

• A string is a special case of character array.

In the next chapter we will discuss regarding user defined data types.

Chapter 9

User defined data-types

We have read about the simple data types. Those are also known as pre-defined data
types or simple data types. Those are of course fundamental data-types but are inade-
quate in some respect. Like if we need to group a set of data for database application
then they cannot be used. Even if they are used it will be difficult to handle, hence we
need a separate way to handle a group of data. The first attempt to do that is using ar-
rays. As we have seen array groups data, but array can only group similar data. But in
case of database application we need to group several unrelated fields. Take an example
of your college. Your college maintains a record for all the students reading. A single
record may contain Name, Address, Batch, roll number, Subjects, Marks obtained in
exams, etc... So if we try to maintain the record for every student then it will be very
difficult for us to do using the simple data types. To ease our work C has a way out. It
gives user to define his/her won data types, these are known as User-deined Data Types
(UDT).

Under user defined data type we have two key word struct (structure) and union.
We will discuss them one by one here.

9.1 Structure

It is, as the name suggests, a compound data type. It groups several different data types,
which are related to one another. Take the example of student record. It has strings in-
tegers floats etc... It is the structure, which binds these different types together as a
single data type.The syntax for structure declaration is:

struct <structure name>{
type <data>;
type <data>;
...

}[<optional name>];

47

48 CHAPTER 9. USER DEFINED DATA-TYPES

Let us see an example a very simple one, which has only 2 fields, name a string
type and percentage of mark.

struct st_ach{
char name[40]; /* Student name*/
float pc; /* Percentage of marks obtained*/

};

Here we have defined a structure st_ach which contains a student name and percent
of marks. As we have stated earlier it is a data-type we can define a variable of this
type too. It is done as bellow.

struct st_ach ram, pearson, abdullah , harrison;

In the above statement we are defining 4 variables of struct st_ach type. Well we
have defined those variables now so we should give values to those variables. Here we
can not simply assign the variables with their corresponding values. Because there are
two fields and we should assign 2 values to these variables. The assignment of values
in case of structure is done as bellow.

strcpy(ram.name,"Ramesh”);
ram.pc=76.54;
strcpy(pearson.name,"david”);
pearson.pc=74.95;
strcpy(abdullah.name,"Ramesh”);
abdullah.pc=76.54;
strcpy(harrison.name,"david”);
harrison.pc=74.95;

Recall in the operator chapter we have read about dot “.” operator. The dot operator
is used here in structures to access the fields. The other operator used with structure is
arrow “->” . We will discuss the arrow operator in pointers chapter.

This is a small example, we will see how to store data in to a structure type variable
and how to retrieve data from a structure type variable. Consider a record which stores
a studentâs name, address and grade point. We will put data for some students and see
the result by printing them.

#include<stdio.h>
main()
{

struct student
{

char name[20]; /*studentâs name will be within 20 chars*/
char address[20];/*address of student*/
float grade;

};

9.1. STRUCTURE 49

struct student a, b, c;
/*assigning values to structures*/
strcpy(a.name,”hari”);
strcpy(a.address,”cuttack”);
a.grade=7.5;
strcpy(b.name,”peter”);
strcpy(b.address,”newyork”);
b.grade=6.5;
strcpy(c.name,”ramirez”);
strcpy(a.address,”atlanta”);
a.grade=6.45;
/*reading values from structure*/
printf(“%s %s %f\n”,a.name,a.address,a.grade);
printf(“%s %s %f\n”,b.name,b.address,b.grade);
printf(“%s %s %f\n”,c.name,c.address,c.grade);

}

Now it must be clear how the structure works. And you should have noticed the
work of dot “.” operator. Remember the dot operator is used to access the fields of a
structure. Some times it is also called element access operator.

9.1.1 Array of structure
We have already seen array. Array contains a uniform data for all its cell or elements.
We cannot put dissimilar objects in to array. Like an array can contain all integers or
all floats, that is it should be homogeneous. We have seen array of different data type.
Now an obvious question come can there be array of structures?? Yes definitely. Let
us see that now. And also we will see their advantage too. Consider the following pro-
gram fragment, which describes the array of structure and how it can be implemented.

struct person
{

char name[20];
char sex[7];
int age;

};
/*now we can define array of structures*/
struct person p[100]; /*p is an array of 100 structures of type person*/
/*now to input data we should start a loop*/
for(i=0;i<100;i++)
{

...

...
strcpy(p[i].name,person_name);
strcpy(p[i].sex, person_sex);
p[i].age=person_age;

50 CHAPTER 9. USER DEFINED DATA-TYPES

}
/*now to display we have to start another loop*/
for(j=0;j<100;j++)
{

printf(“%s %s %d\n”,p[i].name,p[i].sex,p[i].age);
}

From above code you could have guessed the advantage of array of structures. Is
not it?? Well see in earlier example we have instantiated 3 variables of same structure.
Here if for 100 students we have declared only one array so our code got simpler and
smaller too.

9.1.2 Structure within a structure
We have seen a structure, array of structures and arrays as elements of a structure. So
why cannot a structure be an element of another structure? Yes a structure can also be
an element of another structure. Even a union that we will be discussing next can be an
element of a structure. Consider a case like maintaining information of an employee in
an organization. Every employee has a name, designation, department, employee serial
number, and address. An address contains street, post office, province, country and pin
code. Here we can separate out this address information in a separate structure. And
make it an element of the main employee structure. Let us see how it can be done.

struct address
{

char street[40];
char post_office[40];
char province[40];
char pin[10];

};
struct employee
{

char name[40];
char desig[30];
char dept[30];
int emp_ser_no;
struct address emp_address;

};

In the above example we define a structure address first as we will be using it in our
main employee structure. Then we wrote the employee structure. Well how to access
the elements in this case? It is simple with the same dot operator ”.”. Now we will
instanciate an instance of this structure and see.

struct employee emp[100]; /*we have defined an array of 100 employes*/
/*here we will consider only one employee*/

9.2. UNION 51

strcpy(emp[i].name,”Philippe kahn”);
strcpy(emp[i].desig,”Chief executive officer”);
strcpy(emp[i].dept,”adminstration”);
emp[i].emp_ser_no=1;
strcpy(emp[i].emp_address.street,”lakestreet”);
strcpy(emp[i].emp_address.post,”santaclara”);
strcpy(emp[i].emp_address.state,”California”);
strcpy(emp[i].emp_address.pin,”632559”);

In the above example see how we access the element of address structure. Watch
the two dot operators. The first dot operator for employee structure and the second dot
operator for address structure. So there is basically no difference. We can use as many
dot or arrow operators as we can for nested structures.

9.2 Union
Unions are very similar to structures. But they differ in properties. Structures hold
all the fields they have but unions can hold only one field at any time. Just think of a
structure which has an integer and a character. So we can put 300 in integer field and
’Z’ in character field. But in case of unions we can put either 300 or ’Z’ at any time
not both. The syntax of declareing union is as follows:

union <union name>
{

<type> field1;
<type> field2;
...
...

};

Example:
union my_union
{

int I;
char ch;

};

The values are stored in the union in the same way as that of structures, by using
dot operator or by arrow operator. If we consider the above example of union then it
will be as follows:

union my_union test;
test.i=300; /*if we store an integer*/
Or

52 CHAPTER 9. USER DEFINED DATA-TYPES

test.i=’Z’; /*if we store a character*/

Like structures unions can contain other unions or structures as their elements. And
we also can make an array of unions.

9.3 Enumerated data type

This type associates numbers to identifiers. The enumerated identifiers are always in-
tegers. Let us see how we can define enumerated variable.

enum bool {false, true};

Here enum is the keyword, bool is variable and false and true are the possible val-
ues of bool. Here the false is assigned 0 as default and true the next value 1. If we
donât specify a value to the first then automatically it is assigned a value of 0 and next
values are given in 1 difference. Let us check some other examples.

enum colour {black, white, red, green, blue};

In the above case values will be black=0, white=1, red=2, green=3 and blue=4.
Suppose we modify that and write black=1 instead of only black then the other values
in this enum will be in 1 difference so they will be 2, 3, 4 and 5 respectively. Suppose
we wrote black=-3 then the values for white and others will be â2, â1, 0 and 1. Suppose
we are writing the whole thing as :

enum colour{ black =-3, white, red=1,green, blue=4};

Then the different values are -3 ,-2,1,2 and 4 respectively.Enum are used in programs
where more redability is required.

9.4 Typedef

The type def comes handy in many situations. It can be used to shorten the identifier
name or to name the identifier in a meaning full way. Suppose we have a structure
named address. When ever we use this structure we have to write struct address which
is lengthy hence we can write :

typedef struct address addrs;

From this point onwards we can refere the same structure with only addrs so the
struct address is no more needed. Sometimes it is needed to make identifiers some what
more meaningful, hence the typedef comes in handy in those situation. Typedef never
creates a new data type, it just assign a new name to a existing datatype.

9.5. SUMMING UP 53

9.5 Summing up
In this chapter we read about user defined data types, namely structures, unions and
enumerated datatype. Lastly we saw the typedef which creates a new name for user
convenience. We certainly left out some more interesting things on user defined data
types. We will see them in following chapters.

54 CHAPTER 9. USER DEFINED DATA-TYPES

Chapter 10

Functions

Functions are major building blocks in C programs. The definition of function can
be, it is a part of program, which works separately but cannot execute separately. The
functions are separate entities, they can exist separately they have there won worlds but
they cannot execute separately. This means they are helpers in a program and some
thing is needed to execute them.

Functions are not alien to you. You have used then in your earlier programs. It
sounds interesting is not it? Well the printf () and scanf (), which you have used, are
also functions. They are known as library functions. Functions are two types library
functions and user written functions. We will discuss functions in general and how to
write user defined functions in particular.

Any C program has at least one function. The default function is main () we have
seen that several times in the previous chapters. If you recall we have some other
functions in skeletal program. Use of functions make the program modular, which in
turn make it easier to modify or in case of error it is easy to spot the culprit. So it is
always advisable to write different working part as different functions.

Every function has a name which identifies it, a set of parameters which is passed to
it, which are written within parentheses and a function body which is enclosed within
a pair of curly brackets. The function body contains variable declarations, which are
known as local variables and executable statements. The scopes of the local variables
are limited within that function only.

Occasionally functions return a value. This is known as return value of a function.
In this case additionally a return data type precedes the function name and a return
statement should be present in side the function body. If a function does not return any
thing then it is better to write void in place of return type. Now let us see the syntax of
function definition.

int add(int a, int b)
{

int c;
c=a+b;
return (c);

55

56 CHAPTER 10. FUNCTIONS

}

In the above code we are defining a function named add which takes two integer
type variables a and b, which are known as formal parameters, we have discussed them
in data types. Inside the function body we are defining a local variable c, we then put
an executable statement c=a+b then return statement, which returns c an integer.

From above discussion we can discus function in 4 ways that is based upon the fact
that input parameter and return parameter. Function doesnât take and doesnât return,
takes but doesnât return, returns but doesnât take and returns as well as takes. We ear-
lier discussed if a function doesnât return any value then we should put void as return
type. Now if a function doesnât take any value then we can write void as input param-
eter or formal parameter or leave it blank. Writing void is a good practice. The forms
of the 4 different types are:

void xyz (void) or xyz ()
void xyz (<type> var,...) or xyz(<type> var,...)
<type> xyz (void) or <type> xyz ()

10.1 Function call
Functions cannot execute themselves with exception to main (). In a C program only
main is executable. All other functions are not. If this is true then there must be some
way by which the functions executes. This is known as function call. A function can
be called from another function with exception to main() function. This means main()
functions can call other functions but other functions can not call main(). If by curiosity
you happen to call main() function and it compiled well then you may end up in infinite
loop.

A function is called from within another function by just putting its name inside
that function with proper parameters and if it returns any thing then you must supply a
proper variable to catch the value. Before you can call the function it should be defined
or at least prototyped. See the example bellow.

#include<stdio.h>
/*this function takes 2 integer and return their sum*/
int add(int a, int b)
{

int c;
c=a+b;
return (c);

}
main()
{

int k;
printf(“Main function calling add()\n”);
k=add(3,4);

10.1. FUNCTION CALL 57

printf(“Return value from called function is %d\n”,k);
}

In the above code we first define a function add () , then we call it from function
main() with 2 arguments 3 and 4. We catch the returned value in k which is an integer
type, next we print the value stored in k. From above code it is clear that the calling
function should supply the arguments to called function and store the returned value
if any from the called function. Just like main () function in above program any other
function can call function add. To test that just patch the above code as follows.

#include<stdio.h>
int add(int a, int b)
{

int c;
c=a+b;

}
/*this is just the prototype of the function calculate*/
float calculate(int d, int e, int f);
main()
{

int k,l,m;
float p;
printf(“Enter 3 integers k l m”);
scanf(“%d%d%d”,&k&l&m);
printf(“Now calling calculate ()\n”);
p=calculate(k, l, m);
printf(“The return value from calculate () is %f\n”,p);

}
/*the function definition is to be done here*/
float calculate(int d, int e, int f)
{

int g;
float h;
/*we now call add() function*/
g=add(d, e);
h=1.0*g/e; /*just promoting type of g by multiplying 1.0*/
return (h);

}

10.1.1 Parameter passing technique
Parameters are the values upon which we want the function should operate. These are
passed to functions within parenthesis. The mechanism by which parameters are passed
to function is known as parameter passiing. There are basically 3-types of techniques.

58 CHAPTER 10. FUNCTIONS

• Call by value

• Call by referance

• Call by name

What ever we saw in the previous section above is known as call by value. Modern
compiler no longer supports call by name. Earlier it was available in some language.
We will discuss the call by reference in the pointers chapter.

10.1.2 Call by value
Recall the variables. We have discussed formal parameter there. The variables de-
clared inside the parentheses are known as formal parameters. They are local to theFormal parameter
function itself they donot exist outside the function. The formal parameters act likeTheir Scope
interface between the calling function and the called function. Calling function passes
the actual variables and the called function accepts them in formal parameters. The
actual parameters are mapped one to one on to the formal parameters. This means theFunction-call mechanism
formal parameters are assigned the values of actual parameters when the execution of
the function takes place. Due to this reason this method is known as call by value.

In call by value method if the formal parameters are changed then the values in
calling function will not change. This is because formal parameters are local to the
function. and actual parameters are local to the calling function. But there are certain
cases we need to change the value of the variable from inside a function. This is usually
done in pass by reference methode or else it can be done only incase of global variable.
Only global variables can be changed from within function. Here an interesting thing
comes to mind. If we have defined a global variable and a local variable with same
name then if we change the value then whose value will be changed, let us see it. Con-
sider the following example.

#include<stdio.h>
int v1,v2;_/*we define two global variables*/
void test(void);
void main()
{

v1=10;_/*we assign 10 and 20 to these variables*/
v2=20;
printf("value of v1=%d and v2=%d\n",v1,v2);
test();
printf("value of v1=%d and v2=%d after the function call\n");

}
void test()
{

int v2;
printf("assigning 100 to v1 and 200 to v2 within function\n");
v1=100;
v2=200;

10.2. STRUCTURES AND FUNCTIONS 59

}

Try to compile and run this program the output screen will look something like
bellow. See for yourself to get convinced.

value of v1=10 and v2=20
assigning 100 to v1 and 200 to v2 within function
value of v1=100 and v2=20 after the function call

The above example shows, if we have two variables one global and one local in the
same name and if the value is changed then the value of local variable will be changed
not the global variable.

10.2 Structures and functions

10.2.1 Passing elements of a structure

We can pass individual elements to structure or the whole structure as parameter to a
function we will see how it is done. Elements of a structure can be passed to a function
as normal parameters. That is the pass by value method parameter pasing is done. If
compound data type member is passed then pass by reference is done. As an example
if a string is an element of a structure then that element’s address is passed. See the
example bellow.

struct test
{

int a,b;
float c,d;

};
prn_int(int k)
{

printf("%d\n", k);
}
main()
{

struct test t;
t.a=10;
t.b=20;
t.c=1.2;
t.d=2.9;
prn_int(t.a);

}
This example will take the element as a normal integer value and print it.

60 CHAPTER 10. FUNCTIONS

10.2.2 Passing the entire structure
The entire structure can be passed to a function too. This is also can be done by pass
by value. Care must be taken the passed parameter and formal parameters are of same
type. This means if two structures are identical then also we can not interchange them
in function calls. See the example bellow to get a beter understanding.

/*the structures bellow are identical*/
struct test{

int a;
char c;

};
struct test2{

int a;
char c;

};
/*Let us write a function to take entire structure*/
my_func(struct test t)
{

printf("integer=%d character=%c\n",t.a,t.c);
}
main()
{

struct test t1;
struct test2 t2;
t1.a=10;
t1.c=’A’;
t2.a=20;
t2.c=’X’;
my_func(t1); /*this is alright*/Identical structures are not

same my_func(t2); /*this is wrong*/
}

10.3 Recursion
Recursion is the phenomenon of function calling itself repeatedly. Consider a function
calls itself from within itself. You may think it is a looping function. As in case of
loop care must be taken to stop the it, here too care must be taken to stop the recur-
sion. This is achieved by using a check inside the function to stop recurring infinitely.
Whenever there is a recurring function the compiler generate such code to trace back
the stack. This is useful for the system to wind up when the recursion stops. Recursion
is useful in the situation, where some series of similar and dependant calculations are
needed. The best example is factorial. Factorial of n(n!) can be written as n*(n-1)*(n-
2)*(n-3)*......*2*1. So it is a continued product from n to 1. Hence we can rewrite it

10.4. SUMMING UP 61

as n*factorial of(n-1). From this we can write a function to calculate the factorial of a
number.

int fact(int n)
{

if(n<=1) /*if n is 1 or less return as 1!=1 and 0!=1*/
return(1);
return(n*fact(n-1)); /*else call fact with n-1 */

}

Recursive functions have some disadvantages. They do not optimize memory usage
nor they generate significantly small code. Even in some cases they execute slower than
there non recursive counterpart. When ever there is a function call the program sets up
a stack to store the local variables. Hence for recursive functions some time the stack
gets over run. The advantage of using recursive function call is to write clear and easier
to understand routine. In some cases recursion is unavoidable.

10.4 Summing Up
In this chapter we saw how to write functions and how to call them. We also discussed
pass by value method in details. We also saw how fields of structure and also the entire
structure can be passed. If a field or entire structure is passed to the function then what
ever modification we did to the structure inside the function will not be reflected if this
structure is not a global structure.

The function call mechanism we saw here is pass by value or call by value. The
other way to pass parameter is pass by reference or call by reference will be discussed
in pointer chapter. There also we will see passing variable numbers of parameters and
another interesting thing passing parameter to main function which is also known as
command line parameter passing.

62 CHAPTER 10. FUNCTIONS

Chapter 11

Pointer

It is said if you don’t know pointers then you don’t know C. It is right. Pointers give
us unlimited power in C programming. We can access any system resource any par of
memory and practically any thing. We should be very careful in handling pointers else
pointers are very dangerous.

11.1 What is pointer?

Pointer is a variable, which contains memory address. This address is the location of
another variable in memory. Consider 2 variables. If the first variable contains the
address of second variable then it is said the first variable points to second variable.

In the above picture the variable at 1000 is a pointer to the variable at 1004.

11.1.1 Pointer variables

Here comes the operator ’*’(asterisk). This operator is used to declare a pointer type
variable. The declaration of such a variable consists of type (any valid type), ’*’ and
variable name. The syntax for this purpose is as follows.

<type> * <variable name>;

The type defines here which type of data the pointer is going to point. This means
which type of variableâs address this pointer will point to.

63

64 CHAPTER 11. POINTER

11.2 The operators
Recall the chapter on operators. We have seen 2 operators and left them for pointer
chapter. One is address of operator unary &) and the other is value at operator (unary
*). Do not confuse these operators with “bit-wise and” and “multiplication” operator.

The “&” operator gets the address of any variable and the ’*’ operator counters the
’&’ operator. That is gets the value at that address taking into consideration the base
type. Let us see an example.

Int a, b;
Int *ptr1, *ptr2;
/*Here ptr1 and ptr2 are two pointer type variables,
which can contain the address of 2 integer variables*/
ptr1=&a;
ptr2=&b;

In the above example ptr1 contains the address of a and ptr2 contains the address
of b. By address it is meant the memory location of the variable at the run time.

Suppose at run time a is at location 1004 and it has a value of say 50, then ptr1
will contain 1004 not 50.

Let us now check the * operator. This operator gets the value. So to get the value
stored at any location we can write

m=*ptr1;

Here type of m and base type of ptr1 must be same. Now m contains the value
stored at address pointed by ptr1, that is value of a.

11.3 Pointer expressions
Expressions in pointer are similar to any other data-type. You can add subtract compare
pointers. By add or subtract it is meant you can add a constant. 2pointers can not be
added or subtracted. Similarly multiplication or division of any sort is not possible. Of
course one can multiply with the value pointed by a pointer.

11.3.1 Assignment

A pointer can be assigned to another pointer type variable of same base type. Consider
the following code.

int a; /*a is a normal variable*/
int *ptr1, *ptr2; /* ptr1 and ptr2 are 2 pointer type variable*/
ptr1=&a; /* ptr1 is assigned the address of a */
ptr2=ptr1; /* ptr2 also stores the address of a */

11.4. RELATION BETWEEN ARRAY AND POINTER 65

printf(“%p %p\n”,ptr1,ptr2); /* will print address of a 2 times */

The above code shows assign ing of the address of a variable in to a pointer type
variable. Then we store the address stored in one pointer type variable in another
pointer type variable. Then in last statement we are printing the address stored in those
pointers. You can notice we are using %p here to print the address.

11.3.2 Addition and subtraction
Addition and subtraction in pointers deal with constants, as 2 pointers cannot be added
or subtracted. The obvious question in your mind is why, is not it?? Well think in this
way, pointer is an address of a variable. So adding two addresses has no meaning and it
wont help in any circumstances. Like if you add your address with your friends address
then what will happen? It is now clear I think.

You can add a constant to a pointer the constant is some times known as offset. You
can increment or decrement a pointer too. We will see these in detail in pointer and
array relationship shortly. But for the time being remember the above restriction.

int *p;
int *q;
int *r;
r=p+q; /* this is wrong */
r=p-q; /*this is wrong too*/
r=p+1; /* right */
q+=1; /*right */
q++; q–; /* right */
++q; –q; /*is right too*/

An interesting thing to mark here suppose in above example code âpâ points to
1000, then âp++â points to 1002 not 1001. This is because address if added with a
constant gives the address of another variable of same type as that of base type of
pointer. Here base type of pointer is âintâ, each integer takes 2 bytes adding one means
the address of next integer which is 2 bytes away.

11.3.3 Comparison
Two pointers can be compared using if statement. If p and q are two pointer type
variables then they can be compared like any other data-type.

if(p<q)
printf(“p is in lower memory than q\n”);

11.4 Relation between array and pointer
Pointers are cousins to arrays. They have many things in common and can be some
times used interchangeably. The first point to remember here is array name is a pointer.

66 CHAPTER 11. POINTER

Hence we can apply pointer arithmetic to array. See the picture bellow.

The addresses are assumed in the above picture. When you create an array the pro-
gram reserves memory for it. The amount of memory reserved is dependent on the type
of each element of array and size of array. In the above case we assumed elements are
integer type and the size of array is 10. Thus the corresponding program declaration is
like bellow.

int myarray[10];

Here our program reserved 20 bytes in consecutive memory location starting at
1000. From the above picture you can guess the address of 0th element is 1000, ad-
dress of 1st element is 1002 and so on. Now let us access the elements. For this we will
use â[]â operator. If we print myarray[0] it will print 5, for myarray[1] it will output 9
and so on. Here instead of writing the index directly if we use a variable letâs say âiâ
then we can write myarray[i]. Consider the following code.

main()
{

int i=0;
int myarray[10];

...

...
while(i<10)
{

printf(“%d th element = %d \n”, i, myarray[i]);
i++;

}
...
...
}

This will print the array elements. Now we will change some thing in the while
loop. Rewrite the while loop as follows. We now know the array name is the address
of the first element of array. Hence we will use the value at operator *.

...
int *a; /* a is a pointer to integer */
a=myarray; /* assign myarray to a */
while(i<10)
{

printf(“%d th element = %d \n”, i, *a); /* print i and value */
i++;

11.5. POINTER TO POINTER 67

a++;
}

See the result, they are same, is not it? From the above example you could see
the pointer assignment, value at address and pointer arithmetic. In the above example
instead of writing a++ you can write a+=1 too. More of array and pointer relation
we will se latter in this chapter. We just see the relation between pointer and single
dimensional array. Can there be a pointer to multi dimensional array? Yes, certainly.
But incase of multi dimensional array the declaration is a bit different but similar. In
case of one-dimensional array we put a single * in front of the pointer type variable. In
this case we have to put number of stars depending upon the number of dimension. For
example, in case of 2-dimensional array **, in three-dimensional array *** and so on.
The number of stars should be equal to number of dimensions.

int b[2][3];
int c[2][4][2];
int **k;
int ***l;
k=b; /* as k and b are identical*/
l=c; /*as l and c are identical*/

11.5 Pointer to pointer
If there can be a pointer to any data-type then why can not be for a pointer? Yes it is
possible. In case of multi dimensional array we are defining them. As we know a two-
dimensional array is a single dimensional array of single dimensional arrays. Hence
a pointer to pointer defines a 2 dimensional array. Some times this is called multiple
indirections.

11.6 Array of pointers
If array of any data type is possible then array of pointers is also possible. In this case
each element of the array is a pointer to any data type. Suppose we want to create an
array of integer pointer then we should write in following manner.

int k,l,m,n;
int *a[4]; /*here a is an array of pointer to integer*/
/*hence we can write*/
a[0]=&k;
a[1]=&l;
a[2]=&m;
a[3]=&n;

68 CHAPTER 11. POINTER

11.7 Multidimensional array
We read earlier how to represent multi dimensional arrays using pointers. Now we will
look into how to access the elements of multi dimensional array. Follow the example
bellow.

Int a[3][3][3]; /* a is a multi dimensional array*/
Int p,x,y,z,;
Int ***k; /* k is a pointer to pointer to pointer to integer */
/* hence k can hold the address of a 3-dimensional array*/
k=a;
/*now we will store values into the array*/
for(x=0;x<3;x++)
{

for(y=0;y<3;y++)
{

for(z=0;z<3;z++)
{

printf(“Enter element %d %d %d\n”, x, y,z);
scanf(“%d”,&p); /*read the element*/
((*(k+x)+y)+z)=p; /*store the element in array*/

}
}

}
/*now to print the values */
for(x=0;x<3;x++)
{

for(y=0;y<3;y++)
{

for(z=0;z<3;z++)
{

p=*(*(*(k+x)+y)+z);
printf(“The element %d %d %d=\n”, x, y,z , p);

}
}

}

11.8 Pointer to structure
In the structure chapter we learnt about the operator associated with structure. There
are 2 operators one is dot and the other is arrow. We discussed about dot operator.
Now in pointer chapter we will see how the arrow operator works. The arrow operator
is associated with pointer to structure. That means if we have a pointer, pointing to
a structure type variable, then by using arrow operator the elements can be accessed.

11.9. FUNCTION AND POINTER 69

Now let us see an example. Consider a structure having fields name, age, and sex.

struct my_struct
{

char name[40];
int age;
char sex[7];

};
main()
{

struct my_struct *frnd; /*define a pointer to structures*/
char temp[40];
int k;
printf(“Enter name=>”);
gets(temp);
strcpy(frnd->name, temp);
printf(“Enter sex=>”);
gets(temp);
strcpy(frnd->sex, temp);
printf(âEnter age=>);
scanf(â%dâ, &k);
frnd->age=k;

/*we put values to structure now we will print the values*/
printf(“%s %d %s\n”,frnd->name,frnd->age,frnd->sex);

}

See here the program will look like any other program on structure but have arrow
operator instead of dot operator. Remember the arrow replaces dot incase of pointer to
structure. We also can make an array of pointer to structure. And use them in a similar
fashion as above. Incase of array of structure we are using dot operator to access the
fields of each cell. Here we have to use arrow operator.

11.9 Function and pointer
We have seen in function chapter how a function takes any data-type and returns dif-
ferent values. Here we will see how a function takes and how it can return pointers.

11.9.1 Pass by reference (passing pointer as argument)

We have discussed pass by value method in functions. In that case the value is passed
to the function. But in case of pass by reference we pass the address of variables to
the called function. As the address of variable is passed, any modification of value at
that address will be reflected in the calling function. Hence this should be considered
seriously.

70 CHAPTER 11. POINTER

The pass by reference is advantageous when we pass array or we need the variableâs
value should be changed by the function. Consider the case of a swapping function we
need to alter the values and that should be available in calling function. We know a
function can return only one value hence pass by value is not possible. So it is done
using pass by reference. Consider the following swapping example.

#include<stdio.h>
void swap (int *p, int *q) /* we take two pointers */
{

int * temp; /* temporary pointer variable */
*temp= *p; /*store the value stored in p*/
*p= *q; /* store value stored in p into q */
*q= *temp; /* transfer the stored value in temp to q*/

}
main()
{

int a=10, b=30;
printf(“Value of a=%d and of b=%d before swap()\n”, a, b);
swap (&a, &b); /* passing addresses*/
printf(“Value of a=%d and of b=%d after swap()\n”, a, b);

}

11.9.2 Function returning pointer
Function can return pointer. Like any other type of data a pointer can be returned from
a pointer, by putting the address of the returned variable in return statement. It should
be remembered, when a function finishes its execution, its variables are wiped out. The
following example shows how to return a pointer.

#include<stdio.h>
Int *calc (int k)
{

int p;
p=k*2;
return(&p); /*we are returning address of p an integer type variable*/

}
main()
{

int k,*l;
k=5;
l=calc(k); /*
printf(“twice %d is %d\n”; k, *l);

}
A string or an array can also be returned but the methods are somewhat more complex.
See bellow for an example.

11.9. FUNCTION AND POINTER 71

char *stringadd (char * st1, char *st2)
{

char * retval=st1;/* save the original address of first string */
while(*st1!=’\0’) /*find the end of the string */ Take it as a challenge and try to replicate

all string functions and make a string li-

brary.

st1++;
while(*st2!=’\0’)

st1++=st2++; /*get character from 2nd and put in 1st*/
*st1 = *st2; /* put the null character at the end*/

return(retval);
}

The above function in the code for string manipulation function strcat() function.
Similarly other string functions can be written.

11.9.3 Pointer to function
Well we now know a pointer is an address. As the function also stays in memory at
the time of execution, it has an address too. If we know the address of a function what
can we do?? Because a function is not a variable we cannot put value to it so how it is
useful to know address of a function?? Yes it is very important. The function pointers
are comes handy if we need to pass function to another function as a parameter or make
it an element of a structure or union. Application of this is numerous. Even using this
concept we can write programs in Object Oriented manner. Let us see a small example
to check how we can write and use pointer to function.

#include<stdio.h>
void my_func(void) /*declare a function */
{

printf("Inside my_func()\n");
}
/*declare a function to take another function as parameter*/ A function can be passed to another

function as a parameterint second_fun(void (*p)(),int k)
{

printf("passed integer is %d\n",k);
printf("Executing function passed\n");
p(); /*execute the passed function indirectly*/
return(k);

}
main()
{

/*define a structure with a function pointer as an element*/
struct
{

int i;
void (*f)(); /*element is a function pointer*/ A function can be a member of a struc-

ture or union}pqr;

72 CHAPTER 11. POINTER

void (*test)(); /*define test as a function pointer which points
points to a function that takes nothing and returns nothing*/

test=&my_func; /*assign address of my_func() to test*/
pqr.i=5;
pqr.f=test; /*store the address of my_func() in the structure*/
test(); /*execute the function indirectly through pointer */
pqr.f(); /*execute again as structure member */
second_fun(test,5); /*pass to a function as parameter */

}

11.9.4 Variable numbers of argument passing to function
In the previous chapter we have seen passing parameter by value and in this chapter you
have seen passing parameter by reference. In both the ways the number of parameter
passed to the function is known beforehand. So we just mention the types inside the
parenthesis. But if the number of arguments to be passed to a function is not known
then we cannot write a function. Well no, we can write. The way is known as variable
number of arguments passing to function.

Variable argument passing is done by including stdargs.h. This stands for standard
arguments passing. We will see the mechanism latter but a program to demonstrate the
fact follows.

/*
EXAMPLE of variable number of arguments passing to a function

*/
#include<stdio.h>
#include<stdarg.h>
/*

The function bellow accepts variable number of integer arguments
and returns sum of them

*/
int summer(int count,...)
{

int result=0; /* to the sum */
va_list args; /* args is the list */
int arg; /* to store indivisual integer*/
va_start(args,count); /* create the list */
while(count!=0)
{

arg=va_arg(args,int); /* separate out the integers */
result+=arg; /* find sum */
count–;

}
va_end(args);
return (result); /* return the result */

11.10. COMMAND LINE PARAMETER PASSING 73

}
main()
{

int res;
printf("passing 3 integers 1 2 3 to summer()\n");
res=summer(3,1,2,3);
printf("sum=%d \n",res);
printf("passing 5 integers 3 4 5 6 7to summer()\n");
res=summer(5,3,4,5,6,7);
printf("sum=%d \n",res);

}

Examine the above code. The function summer will sum the arguments passed.
The function declaration contains count integer type, which denotes the number of
arguments to be passed. Then ’...’ the ellipsis. The ellipsis denotes the variable number
of arguments follows.

In the function we have used âva_listâ which is an array defined in the header file
stdarg.h. The va_list type array contains the argument list passed to function. Then
we encounter va_start this is a macro, which is defined in the header file. This is
responsible for initializing the list of arguments. This means this should be called to
initialize the va_list type variable. This macro takes 2 arguments; they are va_list type
array and the last fixed variable. In our example args is va_list type and the last fixed
variable is count. The next new thing we encounter is va_arg. This macro also takes
2 arguments. The va_list type array and the type of arguments present in the array. In
our example we pass integers. After the list is processed we stop the process or clear
the list by calling va_stop. This macro takes only one argument of type va_list and
clears it.

The sequence of use of the macros stated above is fixed. This implies the va_start
should be used first, and then to separate out the arguments va_arg and to finish up
va_stop should be used. If the sequence is changed then the result is unpredictable.

11.10 Command line Parameter passing
We have seen functions take parameters. So can main() take parameters?.

Yes it can. This is known as command line parameter passing. To understand com-
mand line parameter passing we should know how a program is executed. We already
have discussed the execution of a program starts at main(). So main () is the starting
function and it calls other user written or library functions. But how main is executed?
We have already stated until another process or function does not call a function it
cannot be executed. So there must be some process or function that calls the main
function. Yes this is the shell or command interpreter which calls the main function.
So the command interpreter should pass the parameter to the main(). Now let us see
one example,but prior to that we should see what information the Operating System
or Command interpreter passes. Generally the operating system passes the parameters
written on the command line through the PSP (Program Segment Prefix). This is an

74 CHAPTER 11. POINTER

array of strings. There is also another type of information available to the program; that
is known as environment parameter, an array of string too. See the following example.

/*
EXAMPLE of command line parameter passing

*/
#include<stdio.h>
main(int argc, char *argv[],char *envp[])
{

int i=0,n=0;
printf("number of command line parameters = %d\n",argc);
while(argc>n)
{

printf("%s\n",argv[n]);
n++;

}
while(*envp!=NULL)
{

printf("%s\n",*envp);
envp++;

}
}

Compile the program and execute from command prompt as follows. Suppose the
name of the program is cmdln.c then the executable name will be cmdln.exe. now at
command prompt type cmdln 1 2 3 4 and press enter. It will display you some infor-
mation as follows.

number of command line parameters = 5
F:\ZIPS\C-BOOK\CMDLN.EXE
1
2
3
4
TMP=C:\WIN98\TEMP
TEMP=C:\WIN98\TEMP
PROMPT=pg
winbootdir=C:\WIN98
COMSPEC=C:\WIN98\COMMAND.COM
PATH=C:\WIN98;C:\WIN98\COMMAND;G:\BC3\BIN;
windir=C:\WIN98
BLASTER=A220 I5 D1 T4 P330
CMDLINE=cmdln 1 2 3 4

In the above output the first line is from the programâs first printf() statement. Next
line is the executed programs name with path this is argv[0]. Then the program outputs
1, 2, 3, 4 that we have supplied in the command line after that all are the environmental

11.11. SUMMING UP 75

variables the operating system and shell need for their processing.

11.11 Summing up
It was a long chapter is not it ?? well we read all aspects of pointer(no no not all).
We left out certain thing too. We left some exercise in string manipulation and data
structure. The data structure part will be dealt in next chapter. But the strings are left
as exercise to you the reader.

Here you should remember every thing we write in a program and which generates
a code has an address so we can have a pointer to that. But one type of variable has
no address they are register variables.

76 CHAPTER 11. POINTER

Chapter 12

Dynamic Data structures

Dynamic data structure?? Sounds odd?? Yep!! It sounds odd. Well well cool down.
This chapter is really really big. Many books are available on this subject. It is really
a vast topic. We cannot deal with all aspects of data structure. What we will deal is
fundamental of this subject. In this section and stipulated space we will try to grasp
some knowledge of dynamic allocation of memory. Some algorithm related to data
structure namely singly linked list, stack and queue. This is not all in data structure.
This subject also includes doubly linked list, tree (binary tree), rings, graph and several
theorems dealing with them.

12.1 Dynamic memory allocation
The repetition of dynamic must be irritating you. When ever we declare a variable
some memory is reserved for it. This is static allocation. This allocated memory can-
not be de-allocated by the program. This means this allocation is valid until the scope
of the variable exists. In contrast dynamic allocation means we can assign memory for
a variable and we can de-allocate that memory when we feel to do so. This allocation
and de-allocation is done by library functions in C-language. We will see it in the fol-
lowing example.

#include<stdio.h>
#include<alloc.h>
void main()
{

int i,temp;
int *a; /*declareing a pointer to integer*/
/*now we will create an array dynamically*/
/*we will create an array of 10 integer*/
a=(int *)malloc(10*sizeof(int));
/*now we have created an array of 10 integer*/
printf("prompt 10 times to input an integer\n");

77

78 CHAPTER 12. DYNAMIC DATA STRUCTURES

for(i=0;i<10;i++)
{

printf("enter an integer ");
scanf("%d",&temp);
a[i]=temp;

}
/* now we will print them*/
printf("You entered: ");
for(i=0;i<10;i++)
{

printf("%d ",a[i]);
}
printf("\nAre those same??\n");

}

In the above program we have seen a new function malloc (). This function is re-
sponsible for allocating memory. The syntax for malloc () function is

Void * malloc (size_t n).

In the above syntax malloc function allocates n bytes of memory from heap and
return a void pointer. A void pointer is a generic pointer, which can be casted to any
type. See the above example, we have written a=(int *) malloc (10 * sizeof (int)); here
we cast the pointer returned by malloc to integer pointer then store that in a. So ul-
timately we are reserving 20 bytes (10 *2 bytes) of memory. Now consider if there
is not sufficient memory to allocate then our malloc function will fail. If it fails how
can we know?? Yes if it fails then it returns a null value. Well we have not checked
whether our malloc function is successful or not. We assumed it to be successful. A
real programmer would have checked it in th following manner.

a=(int *) malloc(10*sizeof(int));
if(a==NULL)
{

printf (“Not enough memory \n”);
exit (-1); /*exit with code -1*/

}

We also have not freed the memory at the end of our program. It is not advisable
to leave allocated memory even after it is used. So a free () function should be called.
A free function frees a block of memory, and takes the pointer which points to the
memory block as argument. So we should write free (a); before we close the program.
Another thing to remember we should free the allocated memory immediately after the
use and if we don’t need it any more. Again if we have allocated more than one block
of memory then they should be freed in the reversed order of their allocation. There are
several other memory allocation routines but malloc is used often and we need malloc
in this chapter. For those of you are interested in knowing other memory allocation

12.2. LINKED LIST 79

routines, they should refer to the compiler documentation. We now move to some real
thing of data structure.

12.2 Linked list
Linked list is another method of storing values like array. In case of array the number
of element must be known before hand, but here it is dynamic. You can add as much
element you can until your systems memory is exhausted.

12.2.1 Creation
This linked list is based upon two things one every link is a self-referring structure and
the other is we allocate the link at runtime using malloc. If you don’t understand these
two then re-read and try some example.

Every link in a linked list is known as a node. Every node has a data part and at
least one pointer part to point to nearby node. Now we will see the algorithm to create
a linked list.

• Declare a pointer to node assume it as list. Algorithm for singly linked list

• Allocate memory for a single node and store the address in list.

• Put the data in data part.

• Put NULL in pointer part.

• For subsequent nodes:

• Allocate memory for a node.

• Put the data in to data part.

• In pointer part put address stored in list.

• Assign current node address to list.

single linked list.

80 CHAPTER 12. DYNAMIC DATA STRUCTURES

The above algorithm makes a linked list. Here observe the recent node is at be-
ginning of list. This is actually the algorithm of stack, which we will see later. We
could have done in other way that is first element is at beginning. Now let us see code
examples for both the method.

/*example of linklist first element is at end of linked list*/
#include<stdio.h>
#include<alloc.h>
/*define a self-reeferring structure for use as node*/
struct my_struct
{

int num;
struct my_struct *next;

};
typedef struct my_struct node;
node *list; /*declare a global variable list*/
/*initialize the list or creates a list*/
void init(int val)
{

list=(node *)malloc(sizeof(node));/*Allocate a block of memory*/
list->num=val; /*put the data*/
list->next=NULL; /*put null in pointer*/

}
/*add to list*/
void add(int val)
{

node *temp;
temp=(node *)malloc(sizeof(node)); /*allocate a block*/
temp->num=val; /*put the data*/
temp->next=list; /*put address in list into pointer part*/
list=temp; /*store the new address in list*/

}
/*prints the list*/
void show()
{

node *temp;
temp=list; /*assign the address in list to temp*/
while(temp) /*while temp!=NULL */
{

printf("%d ",temp->num); /*print the data stored in data part*/
temp=temp->next; /*shift the pointer to next node*/

};
printf("\n");

}
/*the main program*/
main()

12.2. LINKED LIST 81

{
init(1); /*initialize the list*/
add(2); /*add an element*/
add(3);
add(4);
add(5);
show(); /*show the list element*/

}

Second method
/*example of linked list first element is at begining*/
#include<stdio.h>
#include<alloc.h>
/*define a self-reeferring structure for use as node*/
struct my_struct
{

int num;
struct my_struct *next;

};
typedef struct my_struct node;
node *list,*cur; /*declare two global variables list and cur*/
/*initialize the list or creates a list*/
void init(int val)
{

list=(node *)malloc(sizeof(node)); /*Allocate a block of memory*/
cur=list; /*make current is list*/
list->num=val; /*put the data*/
list->next=NULL; /*put null in pointer*/

}
/*add to list*/
void add(int val)
{

node *temp;
temp=(node *)malloc(sizeof(node)); /*allocate a block*/
cur->next=temp; /*add the new node after current*/
temp->num=val; /*put the data*/
temp->next=NULL; /*put address in list into pointer part*/
cur=temp; /*store the new address in list*/

}
/*prints the list*/
void show()
{

node *temp;
temp=list; /*assign the address in list to temp*/
while(temp) /*while temp!=NULL */
{

82 CHAPTER 12. DYNAMIC DATA STRUCTURES

printf("%d ",temp->num);/*print the data stored*/
temp=temp->next; /*shift the pointer to next node*/

};
printf("\n");

}
/*the main program proper*/
main()
{

init(1); /*initialize the list*/
add(2); /*add an element*/
add(3);
add(4);
add(5);
show(); /*show the list element*/

}

Note in above examples the first example shows adding at beginning and the second
adding at end. We will use those in two different situations first one in stacks and
second one in queue. The show functions are same they just traverse the list and print
the values stored in different nodes.

We now saw how to make a linked list. Next we will see how to search for a
particular data in a list, how to add a new node before and after a node, lastly how to
delete a particular node.

12.2.2 Searching
Searching a data in a list is done sequentially. That is we have to start at the head and
move up to tail, checking the data in every node. The way one follows is first store
the address of head of list. Compare the data, if found end searching else go to next
node by doing temp=temp->next and repeat comparing until we reach the last node.
See bellow for a search function on the above created list.

int search(int val) /*we need to pass the value*/
{

node *temp;
int nc=0; /*node counter*/
temp=list; /*store the list head in temp*/
while(temp) /*while not last node */
{

if(temp->num==val) /*compare data*/
return (nc);/*if matches return node number*/
temp=temp->next; /*else go to next node*/
nc++; /*increment node count*/

} /*loop*/
return(-1); /*loop exhausted so not found*/
/*return -1*/

12.2. LINKED LIST 83

}

12.2.3 Inserting a node
We can add an element to a list in 2 ways. Add after and add before. Add before is
tricky but add after is somewhat easier. The logic for adding after a data value is, first
search the data, get the address of node holding it, allocate memory for new node to be
inserted after, assign the data value, store the next node address of current node in new
nodeâs next node address, store the new nodeâs address in current nodeâs next node
field. Well this logic is confusing, is not it? See the picture bellow.

In the above picture we have a list, which has 2,3,7 and 9 as its element. Now we
want to add a new node whose data value is 5 and it should be inserted after the node
containing 3. We first browse the list to find the address of node containing 3. then we
allocated the new node, which contains 5, we now store the address contained in the
next field of node containing 3 in the new nodeâs next node field. Now we store the
address of new node in the next node field of node containing 3. Now we will write a
function to do the same.

void insert_after(int which, int what)
{

node *cur, *temp;
cur=list;
while(cur->num!=which)
{

cur=cur->next;
}
/*we found the node now*/
temp=(node *)malloc(sizeof(node));
temp->num=what;
temp->next=cur->next;
cur->next=temp;

}

Write this above function into list program and modify the main function to call
this function after the show() , again call show function to see what happens.

In case of add before we have to store the previous node address and call use the
technique of add after. See the above picture for add after if we say we are adding 5
before 7 we are right too. For adding before we need to determine the address of node

84 CHAPTER 12. DYNAMIC DATA STRUCTURES

before the node to which we are interested to add before, then we have to perform add
after. Try to write a function to do that.

12.2.4 Deleting
When we find a node, which has no use in the list anymore, we have to delete it. When
a node is deleted the memory occupied by it is freed. Hence we get more memory to
work with. We will see how we can delete or remove a node from a list. The logic
for deletion is first search the node to be deleted and store its previous nodeâs address,
store the next node address in previous nodeâs next field, then free the node. We will
implement this logic in a function.

void remove_node(int what)
{

node *temp,*prev; /*prev is used to store the previous
nodes address*/
temp=list; /*store the list begining in temp*/
/*check if first node is to be deleted*/
if(temp->num==what)
{

list=list->next;
free(temp);

}
else
{

while(temp)
{

prev=temp;
temp=temp->next;
if(temp->num==what)
{

prev->next=temp->next;
free(temp);

}
}

}
}

12.3. STACKS 85

We saw how to create, insert and remove a node in a list. Here we have assumed
the data values are present in list. If data value not present in the list then what will
happen. The program will not complain but nothing will happen and we will not know
why nothing happened. It is better to write some code, which will print some messages
regarding what has happened. Try to implement some verbose output or return some
error values and check those in calling program. These are left to you for practice.

12.3 Stacks
Stack is a special case. It is said to be Last In First Out(LIFO). That is when ever an
element is put in to the stack the order of retrieval is opposite. That is last element put
on to the stack is taken out first. It is analogous to a single ended pipe.

The stack has two functions associated with it. Push and pop. Push pushes ele-
ments to stack and pop gets elements from stack. Pop is a destructive function when
ever a pop is done the element is taken out of stack and the node is deleted. The next
element is now at the stack top. Hence another pop retrieves the next. As an exam-
ple first we pushed 3 values as follows, 100, 200, 350, when we pop first 350 will be
popped next 200 and then 100. Let us write a code for stack.

/*example of linked list implementation of stack*/
#include<stdio.h>
#include<alloc.h>
/*self referring structure*/
struct my_struct
{

int num;
struct my_struct *next;

};
typedef struct my_struct node;
/*bottom of the stack is null.*/
node *list=NULL;
/*push to stack*/
void push(int val)
{

86 CHAPTER 12. DYNAMIC DATA STRUCTURES

node *temp;
temp=(node *)malloc(sizeof(node)); /*allocate a block*/
temp->num=val; /*put the data*/
temp->next=list; /*put address in list into pointer part*/
list=temp; /*store the new address in list*/

}
int pop() /*pop will pop a value and returned it*/
{

node *temp;
int t;
if(list==NULL)

return -1; /*stack is empty*/
temp=list;
list=list->next;
t=temp->num;
free(temp);
return t;

}
main()
{

push(1);
push(2); /*push an element*/
push(3);
push(4);
push(5);
push(6);
push(7);
printf("%d\n",pop()); /*pop element 7*/
printf("%d\n",pop()); /*6*/
printf("%d\n",pop()); /*5*/
printf("%d\n",pop()); /*4*/
printf("%d\n",pop()); /*3*/
printf("%d\n",pop()); /*2*/
printf("%d\n",pop()); /*1*/
printf("%d\n",pop()); /*we are already at bottom of stack*/

}

Remember here stack has only one end. Push puts an element to the stack at its
opened end. Pop pops the element from the open end of the stack.

Application of stack is very enormous. In real computing stack is used everywhere.
Whenever there is a function call the system pushes its content on to the stack. On
returning from function it pops the content and restore the state. Your Operating system
also uses stack to track its operation and state. The compiler you use uses stack to
calculate expressions. The text editor you use uses stack to track and record the undo
information. So uses of stack is many, it depends on you how to use it.

12.4. QUEUE 87

12.4 Queue
This is another use of linked list. This is also used to store data dynamically at the run
time. Data stored in queue is accessed First In First Out (FIFO) manner. The queue
is a open pipe line. Data comes into queue at one end and goes out at the other end.
The receiving end is known as tail and the other end from which data is got is known
as head.

The queue has two function associated with it. One is put and the other is get. Put
function puts an element at tail and the get function gets one element from the head
and deletes it. So whatever things are put to queue is retrieved from queue in the same
manner. Let us see an example now to test it.

/*queue example using linked list*/
#include<stdio.h>
#include<alloc.h>
/*define our self referring structure*/
struct my_struct
{

int num;
struct my_struct *next;

};
typedef struct my_struct node; /*name it as node */
/*declare global variables head and tail*/
node *head,*tail;
/*declare a flag to check if queue is empty*/
int q_empty=1;
/*the put function puts at tail */
void put(int val)
{

node *temp;

88 CHAPTER 12. DYNAMIC DATA STRUCTURES

if(q_empty) /*if queue is empty*/
{

head=tail=(node *)malloc(sizeof(node)); /*create it*/
tail->num=val; /*put the value*/
tail->next=NULL;
q_empty=0; /*queue empty is false*/

}
else /*if queue is not empty then*/
{

temp=(node *)malloc(sizeof(node));/*allocate a node*/
temp->num=val; /*put value to it*/
temp->next=NULL; /*make it last element*/
tail->next=temp; /*make it next to tail*/
tail=temp; /*make new node as tail*/

}
}
/*get function to get from head and return a value*/
int get()
{

node *temp;
int t;
if(q_empty) /*if queue is empty*/
{

return (-1); /*return error=-1*/
}
temp=head; /*if not empty*/
if(temp->next==NULL) /*if we are at the end of the queue*/
{

q_empty=1; /*make q_empty=1 to tell queue is empty*/
}
else /*if this is not last element*/
{

head=head->next; /*shift head to next element*/
}
t=temp->num; /*extract data from node*/
free(temp); /*free the accessed node*/
return(t); /*return data*/

}
main()
{

put(1); /*put data to queue*/
put(2); /*put data to queue*/
put(3); /*put data to queue*/
printf("%d\n",get()); /*get data from queue*/
printf("%d\n",get()); /*get data from queue*/
printf("%d\n",get()); /*get data from queue*/

12.5. SUMMING UP 89

printf("%d\n",get()); /*queue is empty so -1 will be printed*/
put(100); /*put data to queue*/
put(101); /*put data to queue*/
put(103); /*put data to queue*/
printf("%d\n",get()); /*get data from queue*/
printf("%d\n",get()); /*get data from queue*/
put(104); /*put data to queue*/
printf("%d\n",get()); /*get data from queue*/
printf("%d\n",get()); /*get data from queue*/
printf("%d\n",get()); /*queue is empty so -1 will be printed*/

}

The above example is self-explanatory; still we should discuss the method we used.
As we said earlier, a queue has 2 ends, a head and a tail. We get and put at these ends
respectively. So we declared them. As head and tail are addresses of nodes we declare
them as pointer to node. Then we declare an integer variable q_empty and assigned it 1
(TRUE). As there is no element in the queue at beginning. Then we wrote two functions
put() which puts an element into the queue and a get() which retrieves elements from
the queue. The put() function creates an empty node, put the value and add it to the
queue if queue is not empty; else it creates a node and make head and tail too and
assign 0 (FALSE) to q_empty. As when there is only one element, the head and tail are
the same. The get() checks the empty condition and retrieves the data from the queue
and deletes the node if the queue is not empty. If the element is last element then it
retrieves the value and set q_empty to 1 (TRUE). Else it returns an error-code. The
code inside main() tests the proper working of the queue algorithm.

12.5 Summing up
This chapter gives some idea to the data structure. We cannot discuss all the aspect in
a single chapter and also in a small tutorial like this. Several books are written on this
subject. You can easily obtain one from your local store or library. Choose the one that
is suitable for you.

This chapter described memory allocation, de-allocation and how to use them;
Singly linked list, stack and queue. Note for convenience integer type is taken in the
examples but that can be changed to any valid data type.

In the next chapter we will see file input output operations. We have seen the normal
console input and output functions; we will compare them here.

90 CHAPTER 12. DYNAMIC DATA STRUCTURES

Chapter 13

File Operations

We have heard lots about files. Data file, executable file, source file, Binary file, Text
file and so on. But what is a file. To know what a file is, we have to go back to
data. Datum (singular) is a basic unit. Collection of related data is known as record,
collection of such similar records is known as a file. Next comes where the file exists
and how it is managed. Nearly all operating system has a file system, except those
embedded operating systems sit inside your TV, VCR/VCP, Audio systems and Mobile
phones. Even some intelligent wristwatch can have an operating system. In those
operating systems a file system is not necessary. This file system handles most of the
job dealing with file. Of course we will never know when and how it does its job. We
will just see how the file can be created and written.

Before doing anything with file the file has to be opened. After opening we can
write into or read from the file. So this is the sequence maintained in any file operation.
After our work is over the file should be closed. If the file is not closed before program
exits, then the program forces the file to be closed and the data in the file is lost if it
was opened for writing.

13.1 Opening and closing a file
Any operation on file must precede file opening. File is opened with library functions
available with compiler. Standard file opening functions are fopen () and open (). Both
the functions opens a file for input or output depending on the parameters passed.

FILE *fopen (const char *filename, const char *mode);

Filename is the name of the disk file we want to open, mode is the string, known
as the attribute string or mode string, depending on which the further operations are
done. FILE is a structure, fopen() returns a pointer to this structure. This file structure
contains some vital information regarding file like which type, the collective mode with
which the file is opened, and position of current operation and so on. We may not need
to modify the structure. We only use it the internal fields are not so important for us

91

92 CHAPTER 13. FILE OPERATIONS

now. If the fopen() function succeeds then it returns a pointer to this FILE structure
else it returns a NULL pointer. This means if the file exists then a valid FILE pointer
will be returned else a NULL pointer will be returned. The mode string can have:

r read-only, open an existing file
w create a new file or overwrite a file if it exists
a append, open the file at end of file if exists or create a new one.
r+ open an existing file for update read and write
w+ create a new file for update; if file exists it will be overwritten
a+ open for append, update at the end of file or create a new one if the file does

not exist

These above characters can be associated with t or b to signify the file type text or
binary respectively. Hence rt, r+t, wt+, r+b etcetera are possible.

Any opened file should be closed. This closing is done by fclose () or close () li-
brary function. It has no such critical syntax it only takes the file handle as argument.

int fclose (FILE *fp);
On success it returns 0 or if error occurs while closing it returns EOF.

Now let us see how to open a file and close it.

/*opening a file to test its presence*/
#include<stdio.h>
main()
{

char fn[15];
FILE *fp;
printf("enter a file name :"); /*get the file name from user*/
scanf("%s",fn);
fp=fopen(fn,"r"); /*try to open the file in readonly mode*/
if(!fp) /*if fp==NULL*/
{

printf("file does not exist\n");
exit(1);

}
printf("file exists\n");
fclose(fp); /*close the file*/

}

The second library function is open () let us discuss about it now. This function
opens a file in a given mode. The syntax for this function is as follows.

int open(const char *path, int access, unsigned mode);

13.1. OPENING AND CLOSING A FILE 93

Here the mode is optional. Path is the path of file to be opened and the access is a
combination of pre-defined constants. On success it returns a non-negative integer and
put the file pointer at the beginning of file. On error it returns -1 and set errno to one
of the following:

ENOENT - file not found
EMFILE - too many open files
EACCES - permission denied
EINVACC - invalid access

The access field can be any one or a combination of these fields

O_RDONLY - open for reading
O_WRONLY - open for writing
O_RDWR - open for reading and writing
O_APPEND - open for append
if this is used the file pointer is set at the end of file
O_CREAT - creates and opens a file
If the file already exists then no thing happen else it is created
O_EXCL - exclusive open, used with O_CREAT, if file exists returns
error
O_TRUNC - open with truncation, if the file exists then the file ts truncated
to 0
O_BINARY - open the file in binary mode
O_TEXT - open in text mode

Several other access modes are available some of them are also operating system
dependant check them with your compiler documentation. The mode is a combination
of the follows:

S_IREAD - permission to read
S_IWRITE - permission to write
Now let us write a program to illustrate the open () function.

/*file example using open()*/
#include<fcntl.h>
#include<sys\stat.h>
#include<io.h>
main()
{
int fh; /*file handle*/
char fn[15];
printf("Enter a file name :"); /*ask to input a file name*/
scanf("%s",fn);
fh=open(fn,O_RDONLY);
if(fh==-1)
{
printf("File does not exist\n");

94 CHAPTER 13. FILE OPERATIONS

exit(1);
}
printf("File present\n");
close(fh);
}

In the above examples we saw how to test the presence of a disk file. The key is
open the file for read if it does not exist then it will give an error. Just by modifying the
mode string in first example or access string in second example we can open it to write
into the file. We will see them next.

13.2 Writing into a file
Till now we know printf (), putc (), putch () and puts () are output functions. These
functions have their cousins for files. They are fprintf (), fputc (), fputs () etcetera.
Check their syntaxes to know more about them. We will see some of them in our
example. As we know printf () and its sister functions are capable of formatted out-
put, we will use fprintf () more. We will use fwrite () function to write a buffer to a file.

int fprintf (FILE *fp, const char *format-string, arguments);

See the similarity between printf () and fprintf (). The only difference is FILE*
field. Incase of printf () the FILE* field is not present because it is used for stdout.
Here fp is a valid FILE* obtained from fopen (). See the example bellow.

/*writing to a file*/
#include<stdio.h>
main()
{

char fn[15];
char *temp;
int p;
float q;
FILE *fp;
printf("enter a file name :");/*ask the user to enter a filename*/
scanf("%s",fn);
fp=fopen(fn,"r"); /*open the file for reading*/
if(!fp) /*if unsuccess*/
{

printf("file does not exist, creating it\n");
fclose(fp);
fp=fopen(fn,"wt+"); /*create it*/
if(!fp) /*if unsuccess again*/
{

printf("unable to create file\n");

13.3. READING FROM A FILE 95

fclose(fp);
exit(1); /*exit */

}
}
else /*if exists*/
{

printf("file exists, oppening for append\n");
fclose(fp);
fp=fopen(fn,"a+t"); /*open it for append*/
if(!fp) /*unsuccess??*/
{

printf("unable to open file\n");
exit(2); /*exit*/

}
}
fprintf(fp,"This is my test file\n"); /*write a string to file*/
fflush(stdin); /*flush the stdin buffer*/
printf("enter a string : "); /*ask the user to enter a string*/
gets(temp);
fprintf(fp,"%s\n",temp); /*write the user entered stringto file*/
printf("enter an integer and a float : "); /*ask for numbers*/
scanf("%d%f",&p,&q);
/*write a formatted string*/
fprintf(fp,"you entered int=%d, float=%f\n",p,q);
printf("closing file\n");
fclose(fp); /*close the file*/

}

The above example is self-explanatory. The only unknown function is fflush(), this
function is used to flush the stream or a buffer. Here we used to flush the stdin buffer.
Try to run the program without fflush () and with fflush () to see what it does and
analyze why it happens.

13.3 Reading from a file
Library functions to read from a file are cousins to scanf (). Hence the first one we
can guess is fscanf () the opposite to fprintf (). The fscanf () function is used to read
formatted values from a file. See the example bellow.

/*example showing formated reading from file*/
#include<stdio.h>
#include<stdlib.h>
main()
{

int i,j,k,l;

96 CHAPTER 13. FILE OPERATIONS

float f,g;
char temp[50],temp2[50];
FILE *fp;
fp=fopen("test.dat","r");
if(!fp)
{

printf("file not found, createing it\n");
}
printf("file found, overwriting it\n");
fclose(fp);
fp=fopen("test.dat","wt+");
if(!fp)
{

printf("unable to create file\n");
fclose(fp);
exit(1);

}
printf("enter 2 integers a floating number and your name : ");
scanf("%d%d%f%s",&i,&j,&f,temp);
printf("writing these numbers to file\n");
fprintf(fp,"%d %d %f %s\n",i,j,f,temp);
fclose(fp);
fflush(stdin);
printf("reopening file for reading the numbers\n");
fp=fopen("test.dat","r");
fscanf(fp,"%d%d%f%s",&k,&l,&g,temp2);
fclose(fp);
printf("value read from file are %d %d %f %s\n",k,l,g,temp2);

}

This is just we are looking into the similarity of functions normally used and func-
tions used with files. There are several other functions available for these purposes.
Suppose we have to write a single character at a time and read in same way we should
not use fprintf () or fscanf () functions. There we have to use getc (), putc (), fgetc ()
and fputc (). Let us discuss them now.

The getc () and putc () are macros defined to read or write a single character from
or to a stream or file. After reading or writing they increment the file pointer to point
to the next character. The fgetc () and fputc () are function version of the getc () and
putc (). If an error occurs or if at end of file they return EOF.

/*character input output example*/
#include<stdio.h>
#include<stdlib.h>
main()
{

char ch;

13.4. WRITING AND READING A BUFFER 97

FILE *fp;
fp=fopen("test.dat","w+");
if(!fp)
{

printf("cannot create file\n");
fclose(fp);
exit(1);

}
printf("type something on keyboard and end it with \\ ");
do{

fflush(stdin); /*flush stdin buffer*/
ch=getc(stdin); /*read from stdin*/
putc(ch,fp); /*write to file*/

}while(ch!=’\\’); /*until back slash*/
fclose(fp);
fflush(stdin);
fp=fopen("test.dat","r+");
if(!fp)
{

printf("error opening file\n");
exit(2);

}
do{

ch=getc(fp); /*read from file*/
putc(ch,stdout); /*write to stdout */

}while(ch!=EOF); /*until end of file*/
}

Rewrite the above program by changing the getc () tp fgetc() and putc () to fputc
() the program will work similarly. Till now we are dealing with predefined data-type,
we will see next how to write a structure to a file.

13.4 Writing and reading a buffer
Every time we cannot write a string or a character to a file and if it is also possible it
is time consuming. Hence we must follow some way to write a bulk of data to a file or
read a bulk of data from a file. One may say using printf () we can write a large string,
yes it is true but we have to prepare a string then we canwrite. Consider a situation in
which we are writing students record to a file. In this case we have to prepare a string
which should contain student name, marks in different subjects address and grade. For
this purpose we have to convert all the required parameters to alpha type then copy
them to a string. Then only we can write this string to a file. While reading we have
to read the string entirely and break it up in to several strings. This is a cumbersome
method. We have to find an alternative way. If we can write a structure to a file then our
purpose is solved. This is achieved by using fwrite () and fread (). These two library

98 CHAPTER 13. FILE OPERATIONS

functions deal with buffer writing and buffer reading to or from file.

size_t fwrite(const void *buf, size_t size, size_t number_of_buffers, FILE *fp);
size_t fwrite(const void *buf, size_t size, size_t number_of_buffers, FILE *fp);
buf is the buffer to be written
size is size of buffer in bytes
number_of_buffers is number of items to be written
fp is the stream to which the data should be written.

Now let us consider an example. Suppose we need to write a structure which con-
tains name, age, sex and phone number of our friend, and we need to store several such
structure to a file called addbook.dat. See the following example to get an idea of how
can it be done.

/*file demo for buffer writing using fopen, fread, fwrite and fclose*/
#include<stdio.h>
#include<stdlib.h>
#include<string.h>
/*our structure to hold the details of our friend*/
struct friend_add
{

char name[80]; /*name is 80 chars max*/
int age;
char sex[7];
char phone[20]; /*phone number is stored as string*/

};
typedef struct friend_add address;
main()
{

FILE *fp;
char temp[80];
int temp_age;
address this_adrs;
/*we will open our file to put the address*/
fp=fopen("addbook.dat","r+");
if(!fp)
{

printf("file not present\n");
}
fclose(fp);
printf("opening for append...\n");
fp=fopen("addbook.dat","a+");
if(!fp)
{

fclose(fp);
printf("error. couldnot open file\n");
exit(1);

}
printf("Enter name : ");

13.4. WRITING AND READING A BUFFER 99

scanf("%[^\n]s",temp);
strcpy(this_adrs.name,temp);
fflush(stdin);
printf("enter age : ");
scanf("%d",&temp_age);
this_adrs.age=temp_age;
fflush(stdin);
printf("enter sex : ");
scanf("%[^\n]s",temp);
strcpy(this_adrs.sex,temp);
fflush(stdin);
printf("enter phone number : ");
scanf("%[^\n]s",temp);
strcpy(this_adrs.phone,temp);
/*we complete reading a structure*/
/*write structure this_adrs of size sizeof(address) 1 item to fp*/
fwrite(&this_adrs,sizeof(address),1,fp);
fclose(fp);
/*now open for reading*/
fp=fopen("addbook.dat","r");
if(!fp)
{

fclose(fp);
printf("error. reading file\n");
exit(2);

}
memset(&this_adrs,’\0’,sizeof(address)); /*clear the structure*/
fread(&this_adrs,sizeof(address),1,fp);
fclose(fp);

printf("%s\n%d\n%s\n%s\n",this_adrs.name,this_adrs.age,this_adrs.sex,this_adrs.phone);
}

In the above program we first defined a structure, then we filled it up and write the
whole structure to the file. Using memset (), we fill null characters in to the memory,
where structure exists. We then reopen the file for reading and we read the whole struc-
ture into memory and print them. Check the printed value with input value; are they
same or not. You may be wondering why the memory region filled up with null. The
answer is to make sure there is no residual values exist. Follow the second program
bellow. Which does the same thing but uses open, read, write and close.

/*buffer writing using open,read,write and close*/
#include<stdio.h>
#include<io.h>
#include<fcntl.h>
#include<sys\stat.h>
#include<stdlib.h>
#include<string.h>
/*our structure to hold the details of our friend*/
struct friend_add

100 CHAPTER 13. FILE OPERATIONS

{
char name[80]; /*name is 80 chars max*/
int age;
char sex[7];
char phone[20]; /*phone number is stored as string*/

};
typedef struct friend_add address;
main()
{

int handle;
int res;
char temp[80];
int temp_age;
address this_adrs;
/*we will open our file to put the address*/
handle=open("addbook1.dat",O_RDONLY);
if(handle==-1)
{

printf("file not present\n");
}
close(handle);
printf("opening for append...\n");
handle=open("addbook1.dat",O_RDWR|O_CREAT|O_APPEND);
if(handle==-1)
{

close(handle);
printf("error. couldnot open file\n");
exit(1);

}
printf("Enter name : ");
scanf("%[^\n]s",temp);
strcpy(this_adrs.name,temp);
fflush(stdin);
printf("enter age : ");
scanf("%d",&temp_age);
this_adrs.age=temp_age;
fflush(stdin);
printf("enter sex : ");
scanf("%[^\n]s",temp);
strcpy(this_adrs.sex,temp);
fflush(stdin);
printf("enter phone number : ");
scanf("%[^\n]s",temp);
strcpy(this_adrs.phone,temp);
/*we complete reading a structure*/
/*write structure this_adrs of size sizeof(address) 1 item to fp*/
res=write(handle,&this_adrs,sizeof(address));
if(res!=sizeof(address))
{

printf("error. Writing to file\n");

13.5. RANDOM ACCESS FILES 101

exit(2);
}
close(handle);
/*now open for reading*/
handle=open("addbook1.dat",O_RDONLY);
if(handle==-1)
{

close(handle);
printf("error. opening file for read\n");
exit(3);

}
memset(&this_adrs,’\0’,sizeof(address)); /*clear the structure*/
res=read(handle,&this_adrs,sizeof(address));
if(res!=sizeof(address))
{

printf("error. Reading from file\n");
exit(4);

}
close(handle);

printf("%s\n%d\n%s\n%s\n",this_adrs.name,this_adrs.age,this_adrs.sex,this_adrs.phone);
}

13.5 Random access files
Whatever examples or the methods of reading and writing we discussed are all sequen-
tial. We will discuss random access methods now. A random access is accessing data
from any location within that file but skipping preceding records or data. Suppose I
want to access 10th record or 100th character, what we generally do is browse through
the file from beginning and stop at where our goal is. Incase of random access there
is no need of browsing through all the records but we can directly jump to the desired
location and start reading or writing. This random access is achieved by seek functions.
Let us see the syntax of seek.

int fseek(FILE *fp, long offset, int whence);
fp file handle
offset number of bytes to skip
whence from where

The return value from fseek() is 0 for success and negative for error. Here fp is
a file handle returned by fopen(). Offset is the distance in bytes expressed in long.
Whence is usually described by three pre-defined constants SEEK_SET, SEEK_CUR
and SEEK_END; these 3 constants represent beginning, current and end of file po-
sition respectively. Let us see an example.

/*file example for random access*/

102 CHAPTER 13. FILE OPERATIONS

#include<stdio.h>
#include<io.h>
#include<string.h>
#include<stdlib.h>
main()
{

FILE *fp;
char str[]="a quick brown fox jumped over a lazydog";
char str2[50];
char ch;
int l=strlen(str);
fp=fopen("test.txd","a+"); /*open file for create or append*/
if(!fp)
{

printf("error. file open\n");
fclose(fp);
exit(1);

}
fputs(str,fp); /*write the string to file*/
fclose(fp); /*close the file*/
fp=fopen("test.txd","r");
if(!fp)
{

printf("error. reading file\n");
fclose(fp);
exit(2);

}
fgets(str2,l+1,fp);
printf("original string in file is\n%s\n",str2);
fseek(fp,0L,SEEK_SET); /*go to begining of file*/
ch=fgetc(fp); /*get a character*/
printf("%c\n",ch); /*print it*/
fseek(fp,-7L,SEEK_END);/*goto 7 character before EOF*/
fgets(str2,8,fp);
printf("%s\n",str2);
fseek(fp,-21L,SEEK_CUR); /*goto 21st character before
current position*/
fgets(str2,7,fp);
printf("%s\n",str2);
fseek(fp,1L,SEEK_CUR); /*skip a single character from current*/
fgets(str2,5,fp);
printf("%s\n",str2);
fseek(fp,8L,SEEK_SET); /*skip 8 character from begining of file*/
fgets(str2,10,fp);
printf("%s\n",str2);
fclose(fp);

13.5. RANDOM ACCESS FILES 103

}

See in above example when we refer to SEEK_END we use negative offset. The
negative offset is due to the fact we cannot seek beyond the end of file and we have to
go backward in file so negative sign is needed. Also see we have used negative offset
with one SEEK_CUR this is because we want to go back from that point.

here is another library function lseek (), this function does the same what fseek()
does but used with file handle returned from open() function. The only difference is
this function returns a long instead of an integer as in the case of fseek(). The working
of lseek is left for you as an assignment, try to write in the light of above example.

13.5.1 rewind()
This library function is responsible to take the file pointer to the beginning of file. The
syntax is: void rewind(FILE *fp). This is same as fseek(fp, 0L, SEEK_SET). Let us
see an example.

#include<stdio.h>
main()
{

FILE *fp;
char str[]="abcdefghijklmnopqrstuvwxyz";
char ch;
int i;
/*create the file for writing*/
fp=fopen("test4.dat","w");
if (!fp)
{

printf("error opening file for write\n");
exit(1);

}
/*write the string to file*/
fprintf(fp,"%s",str);
fclose(fp); /*close the file*/
/*open the file again for reading*/
fp=fopen("test4.dat","r");
if(!fp)
{

printf("error opening file for read\n");
exit(2);

}
/*read the file until k is reached*/
while(ch!=’k’)
{

ch=getc(fp);
printf("%c ",ch);

104 CHAPTER 13. FILE OPERATIONS

}
printf("\n");
/*rewind the file*/
rewind(fp);
/*get 3 characters from file*/
for(i=0;i<3;i++)
{

ch=getc(fp);
printf("%c\n",ch);

}
fclose(fp);

}

The above example will print a to k then abc. When it gets a character from file
using getc(), the file pointer advances after k is read the file pointer actually points to l
but we rewind the file and forced the file pointer to be at the beginning of the file. So
further reads are done at the beginning.

13.6 Summing up
This chapter dealt with file handling. In this chapter we discussed how to open files,
different modes for open a file; then writing and reading from files. We also saw hoe
to jump to different location this means random access. This chapter is as important as
that of data structure because file handling is needed often in real world programming.

Chapter 14

Mixed Mode Programming

In this chapter we will see how we can interface other languages with C and how to
interface C with other languages. That is we have some codes (collection of functions)
in lets say in assembly language and we want to call those code from our C program
and we have some C codes (functions) we want to use them in other languages like
C++.

Before we dive into this sort of adventure it is better to know some interesting fea-
tures of compilers. In the previous paragraph we stated our intention to use functions.
Well you might think already there is a chapter regarding function, so what is more
great about functions? Well yes, There are some thing regarding functions which we
have not delet in the functions chapter. That is calling conventions. This is more or less
specific to compiler implementation and language implementation.

14.1 Calling conventions

Different language (e.g Pascal, C, FORTRAN...) have different protocol to call func-
tions. Basically there are two conventions. Function entry and exit, call

stack management
• Pascal calling convention

• C calling convention (cdcl)

• register calling convention (fastcall)

• stdcall

Calling convention influence two things, they are

• How the parameters to a function is passed

• How the housekipping of stack handling is done

105

106 CHAPTER 14. MIXED MODE PROGRAMMING

14.1.1 Pascal calling convention
Pascal calling convention passes parameters on the stack and pushes them from left to
right in the parameter list. And The parameters are cleared off the stack by the called
function.

If a stack map is taken then it will be some thing like
ebp + 20 value of i, 4 bytes
ebp + 16 value of b, 4 bytes, only lowbyte significant
ebp + 08 value of d, 8 bytes
ebp + 04 return address, 4 bytes
ebp + 00 old ebp value
The above code is a part of Pascal code FUNCTION test1(i:integer; b:boolean;d:double):integer;pascal;

14.1.2 cdcl
Cdecl calling convention passes parameters on the stack and pushes them from right
to left in the parameter list. The parameters are cleared off the stack by the calling
function.

the equivalant stack frame will be
ebp + 16 value of d, 8 bytes
ebp + 12 value of b, 4 bytes, only lowbyte significant
ebp + 08 value of i, 4 bytes
ebp + 04 return address, 4 bytes
ebp + 00 old ebp value
see the order has changed from abobe section.

14.1.3 Stdcall
Sdtcall calling convention passes parameters on the stack and pushes them from right
to left in the parameter list. The parameters are cleared off the stack by the called
function.

ebp + 16 value of d, 8 bytes
ebp + 12 value of b, 4 bytes, only lowbyte significant
ebp + 08 value of i, 4 bytes
ebp + 04 return address, 4 bytes
ebp + 00 old ebp value
same as above but the stack is cleared by the called function.

14.1.4 fastcall or register call
Register calling convention passes parameters in registers eax, edx, ecx and on the
stack and processes them from left to right in the parameter list. There are rules to
decide what goes into registers and what goes on the stack is defined by the language
implementation document or by the compiler implementors choice.

ebp + 08 value of d, 8 bytes
ebp + 04 return address, 4 bytes

14.2. LIBRARIES 107

ebp + 00 old ebp value
The rest of the parameters are passed through registers
i in eax b in edx register.

Note: The above codes were taken from Delphi compiler. MS-VC supports cdcl pascal
stdcall

14.2 Libraries
Libraries, A collection of books? Right, But in our context it is a collection of functions
or procedures. The procedures or functions written by us or by a third party. Well the
advantage of libraries you can guess from the fact that C has only 28 reserved key
words. But how come we are using so many functions in our programs? Well that is
the beauty of library. The C language is extensible using libraries.

There are libraries available for different purposes. If you are writing an application
which deals with connecting to a database server and fetching data then you can write
your data retrival functions but it will be reinventing the wheel. Again think about
situation that you need similar functionality in several projects you do. Is it wise to
rewrite the code in every project? No. The better option is to put those functions which
are needed time to time and make library and include the library in your projects.

14.2.1 How to make a library
very small example will be define write all the functions in to a file compile into an
object file and link it to your projects which demands functions from that library. But
it is a very primitive way. The compiler system you are using already have a library
system. for Borland group it is tlib and for gcc it is ar. Besides library a header file is
needed too. This header file is the interface to the library. This header file contains the
function prototypes which are there in the library.

Consider the following example

/*mylib.c this library is a demonstration library */
/*the concerned interface header file is mylib .h */
/*the linker expects mylib.lib or mylib.a during linking*/
/*depending on the compiler system */
void foo(int bar)
{

printf(“%d bars in foo\n”,bar);
}
int foo_bar(int car, int truck)
{

return(car-truck);
}

lets assume you have several files with functions defined in them. Just compile
them to object files and using the library manger for your compiler system createa a
library named mylib.lib or mylib.a. for the header file which will be the interface to

108 CHAPTER 14. MIXED MODE PROGRAMMING

mylib library just copy the prototypes into a file and name it as mylib .h. Now the
library mylib is ready to work.

/*mylib.h this is the interface to mylib library */
/*the linker expects mylib.lib or mylib.a during linking*/
/*depending on the compiler system */
#ifndef __myheader_h_
#define __myheader_h_
void foo(int bar);
int foo_bar(int car, int truck);
#endif

Now when ever you need any function from the mylib library, include mylib.h in
your projects; And link mylib library to the project.

14.3 Using assembly language routine with C
We now knew some bit of calling convention and how to create a library. It is time
to write some simple code in assembly and call that code from our C program. If you
are so much enthuciastic about it, then please write a C function and call that function
from main() , compile it and check the assembly code how a function is translated into
assembly from C.Consider this as an adventure.

Hint: use compiler to generate
assembly.

Here for assembly language we will discuss only x86 assembly in 32/16 bit and our
assembler will be NASM. If you want to have a copy of nasm then you can get it from
http://nasm.sourceforge.net/. For C compiler we will stick to gcc and TC. You may try
it out with other compiler and assembler too.

14.3.1 An example assembly routine
Here we will write an assembly routine to accept 2 numbers from a c function and
return the sum of both the number. Let us assume the name is addnum. The calling
convention will be cdcl. Let us write the function in assembly language here with
NASM syntax.

[BITS 32]
global addnum
segment .data
segment .bss
segment .text
addnum

push ebp ;save the ebp
mov ebp,esp ;move esp to ebp
mov eax,[ebp+12] ; access the first parameter and store it in eax
mov ebx,[ebp+8] ; access the second parameter and store it in ebx
add eax,ebx ; add the 2 numbers and put the sum in eax
pop ebp ; pop ebp as we are going to exit from function

14.4. A SMALL PROJECT 109

ret ; return to calling function

14.3.2 A C program to call assembly language routine
Now letus write a C program to call the function addnum with 2 parameters.

#include<stdio.h>
extern int addnum(int a, int b);
int main()
{

int res=0;
res=addnum(5,6);

printf(“result is %d\n”,res);
return 0;
}

Now We will see how to make bothe the code and link them to get an executable.
For this first of all the assembly code need to be assembled. To assemble the above
code you must enter it in a text file. Let us call it myfun.asm, from command prompt
fire nasm -f elf myfun.asm. This will generate a file myfun.o. Then enter the C code
above in a file called mytest.c, and fire gcc -c mytest.c. This will generate mytest.o. If
you find no error in above 2 steps then perform gcc myfun.o mytest.o -o mytest. This
will create mytest executable; execute it. If it prints result is 11 then you are done.

For BORLAND C 32bit you have to put an underscore(_) before addnum in as-
sembly. during assembly fire nasm -f obj myfun.asm, replace gcc with bcc and rest are
same.

The reverse, that is calling C functions from asesembly language is also possible.
http://drpaulcarter.com/pcasm/

14.4 A small project
This projeect is all about detecting CPU. The code is split in to two parts, assembly and
C. Follow the procedure described above to make this project.

gcpun.asm
;**
;********* GCPUN.ASM NASM FILE *******
;*********COPYRIGHT(C)2003-2004(GPL) ASHOK SHANKAR DAS*******
;********* ashok_s_das@yahoo.com *******
;**
[BITS 32]
global _is_486
global _is_386DX
global _is_fpu
global _is_cyrix

110 CHAPTER 14. MIXED MODE PROGRAMMING

global _is_cpuid_supported
global _get_cpuid_info
global _cyrix_read_reg
global _cyrix_write_reg
segment .data
segment .bss
;_reg_eax resd 1h
;_reg_ebx resd 1h
;_reg_ecx resd 1h
;_reg_edx resd 1h
segment .text
;
;_is_486 if a 486 is present
;
_is_486:
pushf ; /* save EFLAGS */
pop eax ; /* get EFLAGS */
mov ecx,eax; /* temp storage EFLAGS */
xor eax,0x40000;" /* change AC bit in EFLAGS */
push eax ; /* put new EFLAGS value on stack */
popf ; /* replace current EFLAGS value */
pushf ; /* get EFLAGS */
pop eax ; /* save new EFLAGS in EAX */
cmp eax,ecx ; /* compare temp and new EFLAGS */
jz a ;
mov eax,1 ; /* 80486 present */
jmp b ;
a:
mov eax,0 ;" /* 80486 not present */
b:
push ecx ; /* get original EFLAGS */
popf ; /* restore EFLAGS */
ret;
;
;_is_386DX if a 386DX is present
;
_is_386DX:
mov edx,cr0 ;" /* Get CR0 */
push edx ;" /* save CR0 */
and dl,0xef;" /* clear bit4 */
mov cr0,edx ;" /* set CR0 */
mov edx,cr0;" /* and read CR0 */
and dl,0x10;" /* bit4 forced high? */
pop edx ;" /* restore reg w/ CR0 */
mov cr0,edx ;" /* restore CR0 */
mov eax,1;" /* TRUE, 386DX */

14.4. A SMALL PROJECT 111

jz c ;
mov eax,0;" /* FALSE, 386SX */
c:
ret;
;
;_is_fpu checks if floating point unit(math co processor)is present
;
_is_fpu:
mov sp,bp;
fninit ;
mov ax,0x5a5a;"
push ax;
fnstsw [bp-2] ;"
pop ax
cmp ax,0;"
jne d ;" no fpu
mov eax,1;"
jmp e ;"
d:
mov eax,0;"
e:
ret
;
;cyrix_write_reg(char index, char val) writes to cyrix cpu
;
_cyrix_write_reg:
push ebp;
mov ebp,esp;
push eax;
push ebx;
mov eax,dword[ebp+8]
mov ebx,dword[ebp+12]
pushf; /* save flags */
cli; /* clear interrupt in flags */
out 0x22, eax; /* tell CPU which config. register */
mov eax,ebx;
out 0x23, eax; /* write to CPU config. register */
popf; /* restore flags */
pop ebx;
pop eax;
pop ebp;
ret
;
;_cyrix_read_reg(char index) reads from register
;
_cyrix_read_reg:

112 CHAPTER 14. MIXED MODE PROGRAMMING

push ebp;
mov ebp,esp;
mov eax,dword[ebp+8];
pushf; /* save flags */
cli; /* clear interrupt in flags */
out 0x22,eax; /* tell CPU which config. register */
in eax,0x23; /* read CPU config, register */
popf; /* restore flags */
pop ebp;
ret
;
;is_cyrix checks if it is a cyrix cpu
;
_is_cyrix:
xor ax,ax ;" /* clear eax */
sahf ; /* clear flags, bit 1 is always 1 in flags */
mov ax,5;"
mov bx,2;"
div bl ;" /* do an operation that does not change flags */
lahf ; /* get flags */
cmp ah,2;" /* check for change in flags */
jne f;" /* flags changed not Cyrix */
mov eax,1;" /* TRUE Cyrix CPU */
jmp g;"
f:
mov eax,0;" /* FALSE NON-Cyrix CPU */
g:
ret
;
;_is_cpuid_supported returns 1 if we can execute cpuid
;
_is_cpuid_supported:
pushf ; /* get extended flags */
pop eax ;
mov ebx,eax ;" /* save current flags */
xor eax,0x200000;" /* toggle bit 21 */
push eax ;" /* put new flags on stack */
popf ;" /* flags updated now in flags */
pushf ;" /* get extended flags */
pop eax ;"
xor eax,ebx ;" /* if bit 21 r/w then supports cpuid */
jz e0;"
mov eax,1;"
jmp e1;"
e0:
mov eax,0;"

14.4. A SMALL PROJECT 113

e1:
ret
;get_cpu_info(int cpuid_level, &ret_struct)
;the retstruct will contain information of the registers. it is defined in
; C source file
_get_cpuid_info:
push ebp ; save ebp
mov ebp,esp ; stack pointer to ebp
push esi ;save esi
mov eax,dword[ebp+8] ; get first param in eax FIRST PARAM is at esp+8
mov esi,dword[ebp+0ch] ; get the address of structure in esi which is
; at esp+12d
cpuid ; ; execute cpuid instruction
mov dword[esi+0h],eax ;store eax at esi which is retstruct.reg_eax
mov dword[esi+04h],ebx ;store ebx at esi+4 retstruct.reg_ebx
mov dword[esi+08h],ecx ;store ecx at retstruct.reg_ecx
mov dword[esi+0ch],edx ;store edx at retstruct.reg_edx
pop esi ;restore esi
pop ebp ;restore ebp
ret

The underscores infront of function names may create problem In that case please
remove leading underscores.

gcpu.c

/*CPU IDENTIFICATION PROGRAM modified by Ashok Shankar Das
** 1- Moved assembly codes to separate asm file "gcpun.asm"
** 2- This file now is a pure C file can be compiled
** with any 32-bit c-compiler tested with gcc(djgpp-3.2.3)
**CPU ID routines for 386+ CPU’s
**Written by Phil Frisbie, Jr. (pfrisbie@geocities.com)
**Parts adapted from the cpuid algorithm by Robert Collins(rcollins@x86.org)
**and from Cyrix sample code.
**See cpu.txt for more details on Intel and Cyrix codes.
*/
#include <string.h>
#ifndef TRUE
#define TRUE 1
#define FALSE 0
#endif
typedef struct ret_regs

{
unsigned int reg_eax;
unsigned int reg_ebx;
unsigned int reg_ecx;
unsigned int reg_edx;

114 CHAPTER 14. MIXED MODE PROGRAMMING

}cpu_inf;
char *unknown_vendor = "NoVendorName";
char *cyrix = "CyrixInstead";
char cpu_vendor[16]; /* Vendor String, or Unknown */
char dType[20]="";
int cpu_family=0; /* 3=386, 4=486, 5=Pentium, 6=PPro, 7=Pentium ||?, etc */
int cpu_model=0; /* other details such as SX, DX, overdrive, etc. */
int cpu_stepping=0; /* stepping*/
int cpu_ext_family=0; /* extended family*/
int cpu_ext_model=0; /*extended model info*/
int cpu_fpu = FALSE; /* TRUE or FALSE */
int cpu_mmx = FALSE; /* TRUE or FALSE */
int cpu_cpuid = FALSE; /* Whether the cpu supported the cpuid instruction */
/* if TRUE, you can trust the information returned */
/* if FALSE, be careful... ;) */
int brand=0;
extern int _is_486(void); /* return TRUE for 486+, and FALSE for 386 */
extern int _is_386DX(void); /* return TRUE for 386DX, and FALSE for 386SX */
extern int _is_fpu(void); /*true for yes FPU */
extern int _is_cyrix(void); /*true for Yes*/
extern int _cyrix_read_reg(int);
extern void _cyrix_write_reg(int,int);
#define UNKNOWN 0xff
#define Cx486_pr 0xfd /* ID Register not supported, software created */
#define Cx486S_a 0xfe /* ID Register not supported, software created */
#define CR2_MASK 0x4 /* LockNW */
#define CR3_MASK 0x80 /* Resereved bit 7 */
void cyrix_type(void)
{

char temp, orgc2, newc2, orgc3, newc3;
int cr2_rw=FALSE, cr3_rw=FALSE, type;
type = UNKNOWN;
/* Test Cyrix c2 register read/writable */
orgc2 = cyrix_read_reg(0xc2); /* get current c2 value */
newc2 = orgc2 ^ CR2_MASK; /* toggle test bit */
cyrix_write_reg(0xc2, newc2); /* write test value to c2 */
cyrix_read_reg(0xc0); /* dummy read to change bus */
if (cyrix_read_reg(0xc2) != orgc2) /* did test bit toggle */
cr2_rw = TRUE; /* yes bit changed */
cyrix_write_reg(0xc2, orgc2); /* return c2 to original value */
/* end c2 read writeable test */
/* Test Cyrix c3 register read/writable */
orgc3 = cyrix_read_reg(0xc3); /* get current c3 value */
newc3 = orgc3 ^ CR3_MASK; /* toggle test bit */
cyrix_write_reg(0xc3, newc3); /* write test value to c3 */
cyrix_read_reg(0xc0); /* dummy read to change bus */

14.4. A SMALL PROJECT 115

if (cyrix_read_reg (0xc3) != orgc3) /* did test bit change */
cr3_rw = TRUE; /* yes it did */
cyrix_write_reg (0xc3, orgc3); /* return c3 to original value */
/* end c3 read writeable test */
if ((cr2_rw && cr3_rw) || (!cr2_rw && cr3_rw)) /*DEV ID register ok */

{
/* < < < < < < < READ DEVICE ID Reg > > > > > > > > */
type = cyrix_read_reg (0xfe); /* lower byte gets IDIR0 */

}
else if (cr2_rw && !cr3_rw) /* Cx486S A step */

{
type = Cx486S_a; /* lower byte */

}
else if (!cr2_rw && !cr3_rw) /* Pre ID Regs. Cx486SLC or DLC */
{

type = Cx486_pr; /* lower byte */
}
/* This could be broken down more, but is it needed? */
if (type < 0x30 || type > 0xfc)
{

cpu_family = 4; /* 486 class-including 5x86 */
cpu_model = 15; /* Unknown */

}
else if (type < 0x50)

{
cpu_family = 5; /* Pentium class-6x86 and Media GX */
cpu_model = 15; /* Unknown */

}
else

{
cpu_family = 6; /* Pentium || class- 6x86MX */
cpu_model = 15; /* Unknown */
cpu_mmx = TRUE;

}
}

extern int is_cpuid_supported(void); /* true if Supported*/
extern void get_cpuid_info(int cpuid_levels,cpu_inf *t); /* This is so simple! */
void check_cpu(void) /* This is the function to call to set the globals */
{

long cpuid_levels;
long vendor_temp[3];
cpu_inf t;
memset(cpu_vendor, 0, 16);
if (is_cpuid_supported ())
{

cpu_cpuid = TRUE;

116 CHAPTER 14. MIXED MODE PROGRAMMING

t.reg_eax = t.reg_ebx = t.reg_ecx = t.reg_edx = 0;
get_cpuid_info(0,&t);
cpuid_levels = t.reg_eax;
vendor_temp[0] = t.reg_ebx;
vendor_temp[1] = t.reg_edx;
vendor_temp[2] = t.reg_ecx;
memcpy(cpu_vendor, vendor_temp, 12);
if (cpuid_levels > 0)
{

t.reg_eax = t.reg_ebx = t.reg_ecx = t.reg_edx = 0;
get_cpuid_info (1,&t);
cpu_family = ((t.reg_eax> >8) & 0xf);
cpu_model = ((t.reg_eax> >4) & 0xf);
cpu_stepping=(t.reg_eax & 0xf);
cpu_ext_family=((t.reg_eax> >20) & 0xff);
cpu_ext_model=((t.reg_eax> >16) & 0xf);
switch(((t.reg_eax> >12)&0x7))
{

case 0:
strcpy(dType, "Original");
break;

case 1:
strcpy(dType, "OverDrive");
break;

case 2:
strcpy(dType, "Dual");
break;

}
brand=t.reg_ebx&0xff;
cpu_fpu = (t.reg_edx & 1 ? TRUE : FALSE);
cpu_mmx = (t.reg_edx & 0x800000 ? TRUE: FALSE);

}
}
else
{

memcpy(cpu_vendor, unknown_vendor, 12);
cpu_fpu = is_fpu();
if (!is_486())
{

if (is_386DX()) /* It is a 386DX */
{

cpu_family = 3; /* 386 */
cpu_model = 0; /* DX */

}
else /* It is a 386SX */
{

14.5. SUMMING UP 117

cpu_family = 3; /* 386 */
cpu_model = 1; /* SX */

}
}
else /* It is a 486+ */
{

if(is_cyrix())
{

memcpy(cpu_vendor, cyrix, 12);
cyrix_type();

}
else
{

cpu_family = 4; /* 486 */
cpu_model = 15; /* unknown */

}
}

}
}
int main(void) /* Sample program */
{

check_cpu();
printf("CPU has cpuid instruction? %s\n", cpu_cpuid ? "yes": "no");
printf("CPU vender is %s\n", cpu_vendor);
printf("CPU has fpu? %s\n", cpu_fpu ? "yes": "no");
printf("CPU has mmx? %s\n", cpu_mmx ? "yes": "no");
printf("%s\n", dType);

printf("Family %i, Model %i, Stepping %i\n", cpu_family, cpu_model, cpu_stepping);
printf("Extended Family %i, Extended Model %i\n", cpu_ext_family, cpu_ext_model);
printf("CPU brand %d\n",brand);
return 1;

}

14.5 Summing Up
In this chapter we saw

• calling conventions and how they are implemented in compilers.

• Next we saw how to create a library for using in C projects.

• how to interface assembly language with C

• A small project using assembly language and C.

The project described here is created after doing research on several example CPU
detection codes. Those codes are available on Internet in plenty.

